This paper presents a robust computational model for the response of composite laminates to high intensity transverse dynamic loading emanating from local impact by a projectile and distributed pressure pulse due to a blast. Delaminations are modeled using a cohesive type tie-break interface introduced between sublaminates while intralaminar damage mechanisms within the sublaminates are captured in a smeared manner using a strain-softening plastic-damage model. In the latter case, a nonlocal regularization scheme is used to address the spurious mesh dependency and mesh-orientation problems that occur with all local strain-softening type constitutive models. The results for the predicted damage patterns using the nonlocal approach are encouraging and qualitatively agree with the experimental observations. The predictive performance of the proposed numerical model is assessed through comparisons with available instrumented impact test results on a class of carbon-fiber reinforced polymer (CFRP) composite laminates. Force-time histories and other derived cross-plots such as the force versus projectile displacement and progression of projectile energy loss as a function of time are compared with available experimental results to demonstrate the efficacy of the model in capturing the details of the dynamic response. Another case study involving the blast loading of CFRP composite laminates is used to further highlight the capability of the proposed model in simulating the global structural response of composite laminates subjected to distributed pressure pulses.

1.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
, 1st ed.,
CRC
,
Boca Raton, FL
.
2.
Williams
,
K. V.
,
Vaziri
,
R.
, and
Poursartip
,
A.
, 2003, “
A Physically Based Continuum Damage Mechanics Model for Thin Laminated Composite Structures
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2267
2300
.
3.
Ladeveze
,
P.
,
Allix
,
O.
,
Deu
,
J.
, and
Leveque
,
D.
, 2000, “
Mesomodel for Localisation and Damage Computation in Laminates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
183
, pp.
105
122
.
4.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2899
2938
.
5.
Yu
,
C.
,
Ortiz
,
M.
, and
Rosakis
,
A. J.
, 2002, “
Three-Dimensional Modeling of Intersonic Shear-Crack Growth in Asymmetrically Loaded Unidirectional Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
6135
6157
.
6.
Alfano
,
G.
, and
Crisfield
,
M. A.
, 2001, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
1701
1736
.
7.
El-Sayed
,
S.
, and
Sridharan
,
S.
, 2001, “
Predicting and Tracking Interlaminar Crack Growth in Composites Using a Cohesive Layer Model
,”
Composites, Part B
1359-8368,
32
, pp.
545
553
.
8.
Yang
,
Q.
, and
Cox
,
B.
, 2005, “
Cohesive Models for Damage Evolution in Laminated Composites
,”
Int. J. Fract.
0376-9429,
133
, pp.
107
137
.
9.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
, 2003, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
0021-9983,
37
, pp.
1415
1438
.
10.
Borg
,
R.
,
Nilsson
,
L.
, and
Simonsson
,
K.
, 2001, “
Simulation of Delamination in Fiber Composites With a Discrete Cohesive Failure Model
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
667
677
.
11.
Wells
,
G. N.
,
de Borst
,
R.
, and
Sluys
,
L. J.
, 2002, “
A Consistent Geometrically Non-Linear Approach for Delamination
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
1333
1355
.
12.
de Borst
,
R.
, 2003, “
Numerical Aspects of Cohesive-Zone Models
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
1743
1757
.
13.
Maimi
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J. A.
, and
Davila
,
C. G.
, 2007, “
A Continuum Damage Model for Composite Laminates: Part I—Constitutive Model
,”
Mech. Mater.
0167-6636,
39
, pp.
897
908
.
14.
Maimi
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J. A.
, and
Davila
,
C. G.
, 2007, “
A Continuum Damage Model for Composite Laminates: Part II—Computational Implementation and Validation
,”
Mech. Mater.
0167-6636,
39
, pp.
909
919
.
15.
Bažant
,
Z. P.
,
Belytschko
,
T. B.
, and
Chang
,
T.
, 1984, “
Continuum Theory for Strain-Softening
,”
J. Eng. Mech.
0733-9399,
110
, pp.
1666
1692
.
16.
De Borst
,
R.
,
Sluys
,
L. J.
,
Muhlhaus
,
H.
, and
Pamin
,
J.
, 1993, “
Fundamental Issues in Finite Element Analyses of Localization of Deformation
,”
Eng. Comput.
0263-4759,
10
, pp.
99
121
.
17.
Bažant
,
Z. P.
, and
Oh
,
B. H.
, 1983, “
Crack Band Theory for Fracture of Concrete
,”
Mater. Constr.
0465-2746,
16
, pp.
155
177
.
18.
Bažant
,
Z. P.
, and
Jirásek
,
M.
, 2002, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech.
0733-9399,
128
, pp.
1119
1149
.
19.
Bažant
,
Z. P.
, and
Belytschko
,
T. B.
, 1985, “
Wave Propagation in a Strain-Softening Bar: Exact Solution
,”
J. Eng. Mech.
0733-9399,
111
, pp.
381
389
.
20.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
, 1987, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
0733-9399,
113
, pp.
1512
1533
.
21.
Bažant
,
Z. P.
, and
Lin
,
F. B.
, 1988, “
Nonlocal Smeared Cracking Model for Concrete Fracture
,”
J. Struct. Eng.
0733-9445,
114
, pp.
2493
2510
.
22.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
, 2002, “
Localisation Issues in Local and Nonlocal Continuum Approaches to Fracture
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
175
189
.
23.
De Borst
,
R.
, 1991, “
Simulation of Strain Localisation: A Reappraisal of the Cosserat Continuum
,”
Eng. Comput.
0263-4759,
8
, pp.
317
332
.
24.
Needleman
,
A.
, 1989, “
Dynamic Shear Band Development in Plane Strain
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
1
9
.
25.
Georgin
,
J. F.
,
Sluys
,
L. J.
, and
Reynouard
,
J. M.
, 2004, “
A Coupled Damage-Viscoplasticity Model for the Analysis of Localisation and Size Effects
,”
Comput. Concr.
1598-8198,
1
, pp.
169
199
.
26.
Kroener
,
E.
, 1968, “
Interrelations Between Various Branches of Continuum Mechanics
,”
Mechanics of Generalized Continua
,
E.
Kroener
, ed.,
Springer-Verlag
,
Berlin, Germany
, pp.
330
340
.
27.
Bažant
,
Z. P.
, and
Ozbolt
,
J.
, 1990, “
Nonlocal Microplane Model for Fracture, Damage, and Size Effect in Structures
,”
J. Eng. Mech.
0733-9399,
116
, pp.
2485
2505
.
28.
Jirasek
,
M.
, 1998, “
Nonlocal Models for Damage and Fracture: Comparison of Approaches
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4133
4145
.
29.
Zobeiry
,
N.
,
Forghani
,
A.
,
McGregor
,
C.
,
Vaziri
,
R.
, and
Poursartip
,
A.
, 2007, “
Progressive Damage Modeling of Composite Materials Under Both Tensile and Compressive Loading Regimes
,”
ECCOMAS Thematic Conference on Mechanical Response of Composites
.
30.
Kamel
,
A. K.
,
Worswick
,
M. J.
, and
Nandall
,
D.
, 1998, “
Effect of Non-Local Damage Treatment on Dynamic Fracture Predictions
,”
ASME PVP Congress
.
31.
Kongshavn
,
I.
, and
Poursartip
,
A.
, 1999, “
Experimental Investigation of a Strain-Softening Approach to Predicting Failure in Notched Fibre-Reinforced Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
29
40
.
32.
Du Bois
,
P.
,
Feucht
,
M.
,
Haufe
,
A.
, and
Kolling
,
S.
, 2006, “
A Generalized Damage and Failure Formulation for SAMP
,”
Presented at the Fifth German LS-DYNA Forum
.
33.
Livermore Software Technology Company
, 2007, LS-DYNA Keyword User’s Manual-Version 971, Vols.
I and II
, p.
2206
.
34.
Forghani
,
A.
,
McGregor
,
C.
,
Zobeiry
,
N.
,
Vaziri
,
R.
,
Ellyin
,
F.
, and
Poursartip
,
A.
, 2007, “
Modeling of Effect of Blast Load on Composite Panels
,” UBC-DRDC, Technical Report No. W7701-062619/001/QCL.
35.
Gao
,
Y. F.
, and
Bower
,
A. F.
, 2004, “
A Simple Technique for Avoiding Convergence Problems in Finite Element Simulations of Crack Nucleation and Growth on Cohesive Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
453
463
.
36.
Delfosse
,
D.
,
Poursartip
,
A.
,
Coxon
,
B. R.
, and
Dost
,
E. F.
, 1995, “
Non-Penetrating Impact Behavior of CFRP at Low and Intermediate Velocities
,”
Proceedings of the Fifth Symposium on Composite Materials: Fatigue and Fracture
, pp.
333
350
.
37.
Davidson
,
B. D.
,
Bialaszewski
,
R. D.
, and
Sainath
,
S. S.
, 2006 “
A Non-Classical, Energy Release Rate Based Approach for Predicting Delamination Growth in Graphite Reinforced Laminated Polymeric Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
1479
1496
.
38.
Delfosse
,
D.
, and
Poursartip
,
A.
, 1997, “
Energy-Based Approach to Impact Damage in CFRP Laminates
,”
Composites, Part A
1359-835X,
28
, pp.
647
655
.
You do not currently have access to this content.