Abstract

Micro-electro-mechanical systems (MEMS) often use beam or plate shaped conductors that are very thin with h/LO(102103) (in terms of the thickness h and length L of a beam or side of a square plate). A companion paper (Ghosh and Mukherjee, 2009, “Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part I: Undamped Vibrations,” ASME J. Appl. Mech., 76, p. 051007) addresses the coupled electromechanical problem of MEMS devices composed of thin beams. A new boundary element method (BEM) is coupled with the finite element method (FEM) by Ghosh and Mukherjee, and undamped vibrations are addressed there. The effect of damping due to the surrounding fluid modeled as Stokes flow is included in the present paper. Here, the elastic field modeled by the FEM is coupled with the applied electric field and the fluid field, both modeled by the BEM. As for the electric field, the BEM is adapted to efficiently handle narrow gaps between thin beams for the Stokes flow problem. The coupling of the various fields is carried out using a Newton scheme based on a Lagrangian description of the various domains. Numerical results are presented for damped vibrations of MEMS beams.

1.
Roman
,
M.
, and
Aubry
,
N.
, 2003, “
Design and Fabrication of Electrostatically Actuated Synthetic Microjets
,” ASME, New York,
AMD-259
, pp.
517
524
.
2.
Ko
,
S. C.
,
Kim
,
Y. C.
,
Lee
,
S. S.
,
Choi
,
S. S.
, and
Kim
,
S. R.
, 2003, “
Micromachined Piezoelectric Membrane Acoustic Device
,”
Sens. Actuators, A
0924-4247,
103
, pp.
130
134
.
3.
Mukherjee
,
S.
, 1982,
Boundary Element Methods in Creep and Fracture
,
Applied Science
,
London
.
4.
Banerjee
,
P. K.
, 1994,
Boundary Element Methods in Engineering
,
McGraw-Hill
,
Europe
.
5.
Chandra
,
A.
, and
Mukherjee
,
S.
, 1997,
Boundary Element Methods in Manufacturing
,
Oxford University Press
,
New York
.
6.
Bonnet
,
A.
, 1999,
Boundary Element Equation Methods for Solids and Fluids
,
Wiley
,
Chichester, UK
.
7.
Mukherjee
,
S.
, and
Mukherjee
,
Y. X.
, 2005,
Boundary Methods: Elements, Contours and Nodes
,
CRC
,
Boca Raton, FL
.
8.
Yang
,
T. Y.
, 1986,
Finite Element Structural Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method
, Vols.
1 and 2
, 4th ed.,
McGraw-Hill
,
Berkshire, UK
.
10.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
Mineola, NY
.
11.
Senturia
,
S. D.
,
Harris
,
R. M.
,
Johnson
,
B. P.
,
Kim
,
S.
,
Nabors
,
K.
,
Shulman
,
M. A.
, and
White
,
J. K.
, 1992, “
A Computer Aided Design System for Microelectromechanical Systems (MEMCAD)
,”
J. Microelectromech. Syst.
1057-7157,
1
, pp.
3
13
.
12.
Nabors
,
K.
, and
White
,
J.
, 1991, “
FastCap: A Multi-Pole Accelerated 3-D Capacitance Extraction Program
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
10
, pp.
1447
1459
.
13.
Gilbert
,
J. R.
,
Legtenberg
,
R.
, and
Senturia
,
S. D.
, 1995, “
3D Coupled Electromechanics for MEMS: Applications of CoSolve-EM
,”
Proceedings of the IEEE MEMS
, pp.
122
127
.
14.
Shi
,
F.
,
Ramesh
,
P.
, and
Mukherjee
,
S.
, 1995, “
Simulation Methods for Micro-Electro-Mechanical Structures (MEMS) With Applications to Microtweezer
,”
Comput. Struct.
0045-7949,
56
, pp.
769
783
.
15.
Aluru
,
N. R.
, and
White
,
J.
, 1997, “
An Efficient Numerical Technique for Electromechanical Simulation of Complicated Microelectromechanical Structures
,”
Sens. Actuators, A
0924-4247,
58
, pp.
1
11
.
16.
Shi
,
F.
,
Ramesh
,
P.
, and
Mukherjee
,
S.
, 1996, “
Dynamic Analysis of Micro-Electro-Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
4119
4139
. 0029-5981
17.
Ghosh
,
R.
, and
Mukherjee
,
S.
, 2009, “
Fully Lagrangian Modeling of Dynamics of MEMS With Thin Beams—Part I: Undamped Vibrations
,”
ASME J. Appl. Mech.
,
76
, p. 051007. 0021-8936
18.
Ye
,
W.
,
Wang
,
X.
,
Hemmert
,
W.
,
Freeman
,
D.
, and
White
,
J.
, 2003, “
Air Damping Forces in Laterally Oscillatory Microresonators: A Numerical and Experimental Study
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
557
566
.
19.
Mukherjee
,
S.
,
Telukunta
,
S.
, and
Mukherjee
,
Y. X.
, 2005, “
BEM Modeling of Damping Forces on MEMS With Thin Plates
,”
Eng. Anal. Boundary Elem.
,
29
, pp.
1000
1007
. 0955-7997
20.
Li
,
G.
, and
Aluru
,
N. R.
, 2003, “
Efficient Mixed-Domain Analysis of Electrostatic MEMS
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
22
, pp.
1228
1242
.
21.
De
,
S. K.
, and
Aluru
,
N. R.
, 2004, “
Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
737
758
.
22.
Pan
,
F.
,
Kubby
,
J.
,
Peeters
,
E.
,
Tran
,
A. T.
, and
Mukherjee
,
S.
, 1998, “
Squeeze Film Damping Effect on the Dynamic Response of a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
0960-1317,
8
, pp.
200
208
.
23.
Frangi
,
A.
, and
di Gioa
,
A.
, 2005, “
Multipole BEM for Evaluating Damping Forces on MEMS
,”
Comput. Mech.
0178-7675,
37
(
1
), pp.
24
31
.
24.
Ding
,
J.
, and
Ye
,
W.
, 2004, “
A Fast Integral Approach for Drag Force Calculation Due to Oscillatory Slip Stokes Flows
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
1535
1567
.
25.
Hutcherson
,
S.
, and
Ye
,
W.
, 2004, “
On the Squeeze Film Damping of Micro-Resonators in the Free-Molecule Regime
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1726
1733
.
26.
Bhiladvala
,
R. B.
, and
Wang
,
Z. J.
, 2004, “
Effect of Fluids on the Q
Factor and Resonance Frequency of Oscillating Micrometer and Nanometer Scale Beams,”
Phys. Rev. E
1063-651X,
69
, p.
036307
.
27.
Bao
,
Z.
,
Mukherjee
,
S.
,
Roman
,
M.
, and
Aubry
,
N.
, 2004, “
Nonlinear Vibrations of Beams, Strings, Plates and Membranes Without Initial Tension
,”
ASME J. Appl. Mech.
0021-8936,
71
(
4
), pp.
551
559
.
28.
Pozrikidis
,
C.
, 1992,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
,
Cambridge University Press
,
Cambridge, UK
.
29.
Mukherjee
,
S.
, 2000, “
CPV and HFP Integrals and Their Applications in the Boundary Element Method
,”
Int. J. Solids Struct.
,
37
, pp.
6623
6634
. 0020-7683
30.
Mukherjee
,
S.
, 2000, “
Finite Parts of Singular and Hypersingular Integrals With Irregular Boundary Source Points
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
767
776
. 0955-7997
31.
Bao
,
Z.
, and
Mukherjee
,
S.
, 2004, “
Electrostatic BEM for MEMS With Thin Conducting Plates and Shells
,”
Eng. Anal. Boundary Elem.
,
28
, pp.
1427
1435
. 0955-7997
32.
Liao
,
Y. S.
,
Chyuan
,
S. W.
, and
Chen
,
J. T.
, 2004, “
Efficaciously Modeling Exterior Electrostatic Problems With Singularity for Electron Devices
,”
IEEE Circuits Devices Mag.
,
Sept./Oct.
, pp.
25
34
. 0955-7997
33.
Cunha
,
F. C.
,
De Sousa
,
A. J.
, and
Loewenberg
,
M.
, 2003, “
A Mathematical Formulation of the Boundary Integral Equations for the Compressible Stokes Flow
,”
Comput. Appl. Math.
,
22
(
1
), pp.
53
73
. 0955-7997
34.
Newmark
,
N. M.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
85
, pp.
67
94
.
35.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Element for Continua and Structures
,
Wiley
,
New York
.
36.
Petersen
,
K. E.
, 1982, “
Silicon as a Mechanical Material
,”
Proc. IEEE
0018-9219,
70
, pp.
420
455
.
37.
Sharpe
,
W. N.
, Jr.
, 2001, “
Mechanical Properties of MEMS Materials
,”
The MEMS Handbook
,
CRC
,
Boca Raton, FL
.
38.
Hurty
,
W. C.
, and
Rubinstein
,
M. F.
, 1964,
Dynamics of Structures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
39.
Telukunta
,
S.
, and
Mukherjee
,
S.
, 2006, “
Fully Lagrangian Modeling of MEMS With Thin Plates
,”
J. Microelectromech. Syst.
1057-7157,
15
(
4
), pp.
795
810
.
You do not currently have access to this content.