In this paper, a mathematical investigation on the effect of convective cooling on a reactive third-grade fluid flowing steadily through a cylindrical pipe is performed. It is assumed that the system exchange heat, with the ambient following Newton’s cooling law and the reaction, is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The simplified governing nonlinear equations of momentum and energy are obtained and solved using a special type of the Hermite–Padé approximation technique. The important properties of the overall flow structure including velocity field, temperature field, bifurcations, and thermal criticality conditions are discussed.

1.
Beard
,
D. W.
, and
Walters
,
K.
, 1964, “
Elastico-Viscous Boundary-Layer Flows. I. Two-Dimensional Flow Near a Stagnation Point
,”
Proc. Cambridge Philos. Soc.
0068-6735,
60
, pp.
667
674
.
2.
Schowalter
,
W. R.
, 1978,
Mechanics of Non-Newtonian Fluids
,
Pergamon
,
Oxford
.
3.
Hecht
,
A. M.
, 1973, “
Theoretical Non-Newtonian Pipe-Flow Heat Transfer
,”
AIChE J.
,
19
, pp.
197
199
. 0001-1541
4.
Makinde
,
O. D.
, 2007, “
Thermal Stability of a Reactive Third Grade Fluid in a Cylindrical Pipe: An Exploitation of Hermite–Padé Approximation Technique
,”
Appl. Math. Comput.
,
189
, pp.
690
697
. 0096-3003
5.
Yurusoy
,
M.
, and
Pakdemirli
,
M.
, 2002, “
Approximate Analytical Solutions for the Flow of a Third Grade Fluid in a Pipe
,”
Int. J. Non-Linear Mech.
,
37
, pp.
187
195
. 0020-7462
6.
Fosdick
,
R. L.
,
Rajagopal
,
K. R.
, 1980, “
Thermodynamics and Stability of Fluids of Third Grade
,”
Proc. R. Soc. London, Ser. A
,
369
(
1738
), pp.
351
377
. 0020-7462
7.
Bebernes
,
J.
, and
Eberly
,
D.
, 1989,
Mathematical Problems From Combustion Theory
,
Springer-Verlag
,
New York
.
8.
Bowes
,
P. C.
, 1984,
Self-Heating: Evaluating and Controlling the Hazard
,
Elsevier
,
Amsterdam
.
9.
Demirel
,
Y.
, and
Kahraman
,
R.
, 2000, “
Thermodynamic Analysis of Convective Heat Transfer in an Annular Packed Bed
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
442
448
.
10.
Massoudi
,
M.
, and
Christie
,
I.
, 1995, “
Effects of Variable Viscosity and Viscous Dissipation on the Flow of a Third Grade Fluid in a Pipe
,”
Int. J. Non-Linear Mech.
,
30
, pp.
687
699
. 0020-7462
11.
Szeri
,
A. Z.
, and
Rajagopal
,
K. R.
, 1985, “
Flow of a Non-Newtonian Fluid Between Heated Parallel Plates
,”
Int. J. Non-Linear Mech.
,
20
, pp.
91
101
. 0020-7462
12.
Frank-Kamenetskii
,
D. A.
, 1969,
Diffusion and Heat Transfer in Chemical Kinetics
,
Plenum
,
New York
.
13.
Makinde
,
O. D.
, 2005, “
Strong Exothermic Explosions in a Cylindrical Pipe: A Case Study of Series Summation Technique
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
191
195
.
14.
Makinde
,
O. D.
, 2006, “
Thermal Ignition in a Reactive Viscous Flow Through a Channel Filled With a Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
601
604
.
15.
Vainberg
,
M. M.
, and
Trenogin
,
V. A.
, 1974,
Theory of Branching of Solutions of Nonlinear Equations
,
Noordoff
,
Leyden
.
You do not currently have access to this content.