The intention of this study is to predict the fatigue-safe long life behavior of elastoplastic porous materials subjected to zero-tension fluctuating load. It is assumed that the materials contain a dilute amount of voids (less than 5%) and obey Gurson’s model of plastic yielding. The question to be answered is what would be the highest allowable stress amplitude that a porous material can endure (the “endurance limit”) when undergoing an infinite number of loading/unloading cycles. To reach the answer we employ the two shakedown theorems: (a) Melan’s static shakedown theorem (“elastic shakedown”) for establishing the lower bound to fatigue limit and (b) Koiter’s kinematic shakedown theorem (“plastic shakedown”) for establishing its upper bound. The two bounds are formulated rigorously but solved with some numerical assistance, mainly due to the nonlinear pressure dependency of the material behavior and the complex description of the plastic flow near stress-free voids. Both bounds (“dual bounds”) are adjusted to capture Gurson-like porous materials with noninteractive voids. General residual stresses (either real or virtual) are presented in the analysis. They are assumed to be time-independent as generated, say, by permanent temperature gradient between void surfaces and remote material boundaries. Such a situation is common, for instance, in ordinary porous sleeves (used in space industry and alike). A few experiments agree satisfactorily with the shakedown bounding concept.

1.
Melan
,
E.
, 1936, “
Theorie Statisch Unbestimmter Systeme aus Idealplastischem Baustoff
,”
Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A
,
145
, pp.
195
218
. 0041-1035
2.
Koiter
,
W. T.
, 1960, “
General Theorems for Elastic-Plastic Solids
,”
Progress in Solid Mechanics I
, Vol.
6
,
I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, pp.
203
313
.
3.
Polizzoto
,
C.
, 1993a, “
On the Condition to Prevent Plastic Shakedown of Structures: Part I Theory, Part II: The Plastic Shakedown Limit Load
,”
ASME Trans. J. Appl. Mech.
0021-8936,
60
, pp.
15
25
.
4.
Polizzotto
,
C.
, 1993b, “
A Study on Plastic Shakedown of Structures: Part I: Basic Properties Part II: Theorems
,”
ASME Trans. J. Appl. Mech.
0021-8936,
60
, pp.
318
330
.
5.
Druyanov
,
B.
, and
Roman
,
I.
, 1997, “
Features of the Stress Path at the Post Adaptation Stage and Related Shakedown Conditions
,”
Int. J. Solids Struct.
,
34
, pp.
3773
3780
. 0020-7683
6.
Druyanov
,
B.
, and
Roman
,
I.
, 1997, “
Concept of the Limit Yield Condition in Shakedown Theory
,”
Int. J. Solids Struct.
,
34
, pp.
1547
1556
. 0020-7683
7.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limits for a General Yield Condition: Implementation and Application for a Von Mises Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
425
.
8.
Tirosh
,
J.
, and
Peles
,
S.
, 2001, “
Bounds on the Fatigue Threshold in Metals
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1301
1322
.
9.
Tirosh
,
J.
, and
Peles
,
S.
, 2003, “
Shakedown Bounds for Fatigue Limit in Two Phase Materials
,”
Int. J. Fract.
,
119
, pp.
65
81
. 0376-9429
10.
Kapoor
,
A.
, and
Williams
,
J. A.
, 1996, “
Shakedown Limits in Rolling Sliding Point Contact on an Anisotropic Half Space
,”
Wear
,
191
, pp.
256
260
. 0043-1648
11.
Wong
,
S. K.
,
Kapoor
,
A.
, and
Williams
,
J. A.
, 1997, “
Shakedown Limits on Coated and Engineered Surfaces
,”
Wear
0043-1648,
203-204
, pp.
162
170
.
12.
Dvorack
,
G. J.
, and
Tarn
,
J. Q.
, 1975, “
Fatigue and Shakedown in Metal Matrix Composite
,”
Fatigue of Composite Materials
, ASTM STP Vol.
569
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
145
168
.
13.
Jansson
,
S.
, and
Leckie
,
F. A.
, 1992, “
Mechanical Behavior of a Continuous Fiber Reinforced Aluminum Matrix Composite Subjected to Transverse and Thermal Loading
,”
J. Mech. Phys. Solids
0022-5096,
40
(
3
), pp.
593
612
.
14.
Tirosh
,
J.
, 1998, “
The Dual Shakedown Conditions for Dilute Fibrous Composites
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
167
185
.
15.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
, 1985, “
An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part I
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
877
882
.
16.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
, 1985, “
An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part II
,
ASME J. Appl. Mech.
0021-8936,
52
, pp.
883
889
.
17.
Xue
,
M. D.
,
Wang
,
X. F.
,
Williams
,
F. W.
, and
Xu
,
B. Y.
, 1997, “
Lower Bound Shakedown Analysis of Axisymmetric Structure Subjected to Variable Mechanical and Thermal Loads
,”
Int. J. Mech. Sci.
,
39
, pp.
965
976
. 0020-7403
18.
Huang
,
Y. J.
, and
Stein
,
E.
, 1995, “
Prediction of the Fatigue Threshold for a Cracked Body Using Shakedown Theory
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
3
), pp.
363
370
.
19.
Huang
,
Y. J.
, and
Stein
,
E.
, 1996, “
Shakedown of a Cracked Body Consisting of Kinematic Hardening Materials
,”
Eng. Fract. Mech.
0013-7944,
54
(
1
), pp.
107
112
.
20.
Belouchrani
,
M. A.
, and
Weichert
,
D.
, 1999, “
An Extension of the Static Shakedown Theorem to Inelastic Cracked Structures
,”
Int. J. Mech. Sci.
,
41
, pp.
163
177
. 0020-7403
21.
Tirosh
,
J.
, 2008, “
Extended Fatigue Life by Shot-Peening Process Via Shakedown Analysis
,”
ASME J. Appl. Mech.
0021-8936,
75
(
1
), p.
011005
.
22.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
114
, pp.
2
15
.
23.
Tvergaard
,
V.
, 1981, “
Influence of Voids on Shear Band Instabilities Under Plain Strain Conditions
,”
Int. J. Fract.
0376-9429,
17
, pp.
389
407
.
24.
Tvergaard
,
V.
, 1981, “
Ductile Fracture by Cavity Nucleation Between Larger Voids
,”
Int. J. Fract.
,
18
, pp.
237
251
. 0376-9429
25.
Southwell
,
R. V.
, and
Gough
,
H. J.
, 1926, “
On the Concentration of Stress in the Neighbourhood of a Small Spherical Flaw, and the Propagation of Fatigue Fracture in Statistically Isotropic Materials
,”
Philos. Mag.
,
1
, pp.
71
96
. 1478-6435
26.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Field
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
27.
Sanderow
,
S.
,
Spirko
,
J. R.
, and
Fredhoff
,
T. G.
, 1997, “
Fatigue Properties of P/M Materials
,”
Advances in Powder Metallurgy and Particulated Materials
,
Metal Powder Industries Federation
,
Chicago, IL
.
28.
Katsushi
,
S.
,
Shoji
,
H.
,
Hironori
,
F.
, and
Tohru
,
A.
, 1989,
Fatigue Strength of Steels With Thin Hard Coating
,
Elsevier
,
Amsterdam, The Netherlands
.
29.
Sonsino
,
C. M.
, and
Ziese
,
J.
, 1993, “
Fatigue Strength and Application of Cast Aluminum Alloys With Different Degrees of Porosity
,”
Int. J. Fatigue
0142-1123,
15
, pp.
75
84
.
30.
Suresh
,
S.
1999,
Fatigue of Materials
(
Solid State Science Series
),
Cambridge University Press
,
Cambridge
.
31.
Becker
,
R.
,
Smelser
,
R. E.
, and
Richmond
,
O.
, 1989, “
The Effect of Void Shape on the Development of Damage and Fracture in Plain Strain Tension
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
111
129
.
You do not currently have access to this content.