The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponent and virtual time origin for both sides. The analogy also bounds the power-law exponent between 27 and 12. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields fits that are in good agreement with experiment at modest density ratios.

1.
Speziale
,
C. G.
, and
Bernard
,
P. S.
, 1992, “
Energy Decay in Self-Preserving Isotropic Turbulence Revisited
,”
J. Fluid Mech.
0022-1120,
241
, pp.
645
668
.
2.
Clark
,
T. T.
, and
Zhou
,
Y.
, 2006, “
A Perspective on the Self-Preservation in Isotropic Turbulence
,”
J. Turbul.
1468-5248 (submitted for publication).
3.
Richtmyer
,
R. D.
, 1960, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
0010-3640,
13
, pp.
297
319
.
4.
Meshkov
,
E. E.
, 1969, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Izv. Akad. Sci., USSR Fluid Dyn.
,
4
, pp.
101
104
.
5.
Shvarts
,
D.
,
Sadot
,
O.
,
Oron
,
D.
,
Rikanati
,
A.
, and
Alon
,
U.
, 2001, “
Shock-Induced Instability of Interfaces
,” in
Handbook of Shock Waves
, Vol.
2
,
Ben-Dor
,
G.
,
Igra
,
O.
, and
Elperin
,
T.
, eds.,
Academic
,
San Diego
.
6.
Zhou
,
Y.
, 2001, “
A Scaling Analysis of Turbulent Flows Driven by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. Fluids
1070-6631,
13
(
2
), pp.
538
543
.
7.
Batchelor
,
G. K.
, 1953,
The Theory of Homogeneous Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
8.
Saffman
,
P. G.
, 1967, “
The Large-Scale Structure of Homogeneous Turbulence
,”
J. Fluid Mech.
0022-1120,
27
(
3
), pp.
581
593
.
9.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
, 1966, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
0022-1120,
25
(
4
), pp.
657
682
.
10.
De Kármán
,
T.
, and
Howarth
,
L.
, 1938, “
On the Statistical Theory of Isotropic Turbulence
,”
Proc. R. Soc. London, Ser. A
1364-5021,
164
, pp.
192
215
.
11.
Lesieur
,
M.
, 1987,
Turbulence in Fluids
,
Martinus Nijhoff
,
Dordrecht
.
12.
Lesieur
,
M.
, and
Schertzer
,
D.
, 1978, “
Amortissement Autosimilaire D’Une Turbulence a Grand Nombre De Reynolds
,”
J. Mec.
0021-7832,
17
, pp.
609
646
.
13.
Clark
,
T. T.
, and
Zemach
,
C.
, 1995, “
A Spectral Model Applied to Homogeneous Turbulence
,”
Phys. Fluids
1070-6631,
7
(
11
), pp.
1674
1694
.
14.
Clark
,
T. T.
, and
Zemach
,
C.
, 1998, “
Symmetries and the Approach to Statistical Equilibrium in Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
10
(
11
), pp.
2846
2858
.
15.
Clark
,
T. T.
, and
Zhou
,
Y.
, 2003, “
Self-Similarity of Two Flows Induced by Instabilities
,”
Phys. Rev. E
1063-651X,
68
, pp.
1
16
.
16.
Reynolds
,
W. C.
, 1976, “
Computation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
8
, pp.
183
208
.
17.
Mohamed
,
M. S.
, and
LaRue
,
J. C.
, 1990, “
The Decay Power Law in Grid-Turbulence
,”
J. Fluid Mech.
0022-1120,
219
, pp.
195
214
.
18.
Hinze
,
J. O.
, 1959,
Turbulence
,
McGraw-Hill
,
New York
.
19.
Eyink
,
G. L.
, and
Thomson
,
D. J.
, 2000, “
Free Decay of Turbulence and Breakdown of Self-Similarity
,”
Phys. Fluids
1070-6631,
12
(
3
), pp.
477
479
.
20.
We are indebted to
J. R.
Herring
for this interpretation (personal communication, November, 1997).
21.
Dimonte
,
G.
, and
Schneider
,
M.
, 2000, “
Density Ratio Dependence of Rayleigh-Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
1070-6631,
12
(
2
), pp.
304
321
.
22.
Alon
,
U.
,
Hecht
,
J.
,
Ofer
,
D.
, and
Shvarts
,
D.
, 1995, “
Power Laws and Similarity of Rayleigh-Taylor Mixing Fronts at All Density Ratios
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
534
537
.
23.
Dimonte
,
G.
, and
Schneider
,
M. B.
, 1996, “
Turbulent Rayleigh-Taylor Instability Experiments with Variable Acceleration
,”
Phys. Rev. E
1063-651X,
54
, pp.
3740
3743
.
24.
Schneider
,
M. B.
,
Dimonte
,
G.
, and
Remington
,
B.
, 1998, “
Large and Small Scale Structure in Rayleigh-Taylor Mixing
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3507
3510
.
25.
Dimonte
,
G.
, 1999, “
Nonlinear Evolution of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. Plasmas
1070-664X,
6
, pp.
2009
2015
.
26.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
U.
, and
Shvarts
,
D.
, 2001, “
Dimensionality Dependence of the Rayleigh-Taylor and Richtmyer-Meshkov Instability Late-Time Scaling Laws
,”
Phys. Plasmas
1070-664X,
8
, pp.
2883
2889
.
You do not currently have access to this content.