The development of a continuous turbulence model that is suitable for representing both the subgrid scale stresses in large eddy simulation and the Reynolds stresses in the Reynolds averaged Navier-Stokes formulation is described. A recursion approach is used to bridge the length scale disparity from the cutoff wave number to those in the energy-containing range. The proposed model is analyzed in conjunction with direct numerical simulations of Kolmogorov flows.
Issue Section:
Technical Papers
1.
Speziale
, C. G.
, 1991, “Analytical Methods for the Development of Reynolds Stress Closures in Turbulence
,” Annu. Rev. Fluid Mech.
0066-4189, 23
, pp. 107
–157
.2.
Yakhot
, V.
, Orszag
, S. A.
, Thangam
, S.
, Gatski
, T. B.
, and Speziale
, C. G.
, 1992, “Development of Turbulence Models for Shear Flows by a Double-Expansion Technique
,” Phys. Fluids A
0899-8213, 4
, pp. 1510
–1524
.3.
Gatski
, T. B.
, and Speziale
, C. G.
, 1993, “On Explicit Algebraic Stress Models for Complex Turbulent Flows
,” J. Fluid Mech.
0022-1120, 254
, pp. 59
–78
.4.
Zhou
, Y.
, Vahala
, G.
, and Thangam
, S.
, 1994, “Development of a Turbulence Model Based on Recursion Renormalization Group Theory
, ” Phys. Rev. E
1063-651X, 49
, pp. 5195
–5206
.5.
Thangam
, S.
, Wang
, X.
, and Zhou
, Y.
, 1999, “Development of a Turbulence Model Based on the Energy Spectrum for Flows Involving Rotation
,” Phys. Fluids
1070-6631, 11
, pp. 2225
–2234
.6.
Smagorinsky
, J.
, 1963, “General Circulation Experiments With the Primitive Equations, Part I: The Basic Experiment
,” Mon. Weather Rev.
0027-0644, 91
, pp. 99
–164
.7.
Bardina
, J.
, Ferziger
, J. H.
, and Reynolds
, W. C.
, 1983, “Improved Turbulence Models Based on Large Eddy Simulations Homogeneous, Incompressible Turbulent Flows
,” Stanford University Technical Report TF-19.8.
Germano
, M.
, Piomelli
, U.
, Moin
, P.
, and Cabot
, W. H.
, 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model
,” Phys. Fluids A
0899-8213, 3
, pp. 1760
–1765
.9.
Hussaini
, M. Y.
, 1998, “On Large Eddy Simulation of Compressible Flows
,” AIAA Paper 98-2802, 29th Fluid Dynamics Conference, Albuquerque, NM.10.
Speziale
, C. G.
, 1998a, “Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,” AIAA J.
0001-1452, 36
, pp. 173
–184
.11.
Speziale
, C. G.
, 1998b, “A Combined Large-Eddy Simulation and Time-Dependent RANS Capability for High-Speed Compressible Flows
,” J. Sci. Comput.
0885-7474, 13
, pp. 253
–274
.12.
Hussaini
, M. Y.
, Speziale
, C. G.
, and Woodruff
, S. L.
, 2002, “Continuous Models: Variants of LES
,” 14th US Natl. Congress Theor. App. Mech., Blacksburg, VA.13.
Woodruff
, S. L.
, Seiner
, J. M.
, and Hussaini
, M. Y.
, 2000, “Grid-Size Dependence Considerations for Subgrid-Scale Models for LES of Kolmogorov flows
,” AIAA J.
0001-1452, 38
, pp. 600
–604
.14.
Borue
, V.
, and Orszag
, S. A.
, 1996, “Numerical Study of Three-Dimensional Kolmogorov Flow at High Reynolds Numbers
,” J. Fluid Mech.
0022-1120, 306
, pp. 293
–314
.15.
Shebalin
, J. V.
, and Woodruff
, S. L.
, 1997, “Kolmogorov Flow in Three Dimensions
,” Phys. Fluids
1070-6631, 9
, pp. 164
–170
.16.
Speziale
, C. G.
, 1987, “On Nonlinear K‐l and K‐ε Models of Turbulence
,” J. Fluid Mech.
0022-1120, 178
, pp. 459
–475
.17.
Hur
, N.
, Thangam
, S.
, and Speziale
, C. G.
, 1990, “Numerical Study of Turbulent Secondary Flows in Curved Ducts
,” ASME J. Fluids Eng.
0098-2202, 112
, pp. 205
–211
.18.
Zhou
, Y.
, Vahala
, G.
, and Hossain
, M.
, 1988, “Renormalization Group for Eddy Viscosity in Subgrid Modeling
,” Phys. Rev. A
1050-2947, 73
, pp. 2590
–2598
.19.
Zhou
, Y.
, and Vahals
, G.
, 1993, “Renormalization-Group Estimates of Transport Coefficients in the Advection of a Passive Scalar by Incompressible Turbulence
,” Phys. Rev. E
1063-651X, 48
, pp. 4387
–4398
.20.
Kraichnan
, R. H.
, 1976, “Eddy Viscosity in Two and Three Dimensions
,” J. Atmos. Sci.
0022-4928, 33
, pp. 1521
–1536
.21.
Kraichnan
, R. H.
, 1987a, “Kolmogorov’s Constant and Local Interactions
,” Phys. Fluids
0031-9171, 30
, pp. 1583
–1585
.22.
Kraichnan
, R. H.
, 1987b, “An Interpretation of the Yakhot-Orszag Turbulence Theory
,” Phys. Fluids
0031-9171, 30
, pp. 2400
–2405
.23.
Yoshizawa
, A.
, 1984, “Statistical Analysis of the Derivation of the Reynolds Stress From Its Eddy-Viscosity Representation
,” Phys. Fluids
0031-9171, 27
, pp. 1377
–1387
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.