Abstract
Large-eddy simulation (LES) has traditionally been restricted to fairly simple geometries. This paper discusses LES of reacting flows in geometries as complex as commercial gas turbine engine combustors. The incompressible algorithm developed by Mahesh et al. (J. Comput. Phys., 2004, 197, 215–240) is extended to the zero Mach number equations with heat release. Chemical reactions are modeled using the flamelet/progress variable approach of Pierce and Moin (J. Fluid Mech., 2004, 504, 73–97). The simulations are validated against experiment for methane-air combustion in a coaxial geometry, and jet-A surrogate/air combustion in a gas-turbine combustor geometry.
Issue Section:
Technical
Papers
1.
Mahesh
, K.
, Constantinescu
, G.
, and Moin
, P.
, 2004, “A Numerical Method for Large Eddy Simulations in Complex Geometries
,” J. Comput. Phys.
0021-9991, 197
, pp. 215
–240
.2.
Pierce
, C.
, and Moin
, P.
, 2004, “Progress-Variable Approach for Large-Eddy Simulation of Nonpremixed Turbulent Combustion
,” J. Fluid Mech.
0022-1120, 504
, pp. 73
–97
.3.
Kim
, W.-W.
, and Syed
, S.
, 2004, “Large-Eddy Simulation Needs for Gas-Turbine Combustor Design
,” AIAA Paper No. 2004-0331.4.
Mongia
, H. C.
, 2003, “Recent Advances in the Development of Combustor Design Tools
,” AIAA Paper No. 2003–4495.5.
Menon
, S.
, 2003, “Modeling Pollutant Emission and Lean Blow Out in Gas Turbine Combustors
,” AIAA Paper No. 2003–4496.6.
Mari
, C.
, and Mahias
, O.
, 2003, “Numerical Modeling at SNECMA: Current Status and Outlooks for the Future
,” ISABE Paper No. 2003-1005.7.
Peters
, N.
, 2000, Turbulent Combustion
, Cambridge University Press
, Cambridge, UK
.8.
Peters
, N.
, 1984, “Laminar Diffusion Flamelet Models in Nonpremixed Turbulent Combustion
,” Prog. Energy Combust. Sci.
0360-1285, 10
, pp. 319
–339
.9.
Klimenko
, A. Yu.
, and Bilger
, R. W.
, 1999, “Conditional Moment Closure for Turbulent Combustion
,” Prog. Energy Combust. Sci.
0360-1285, 25
, pp. 595
–687
.10.
Pope
, S. B.
, 1985, “PDF Methods for Turbulent Reactive Flows
,” Prog. Energy Combust. Sci.
0360-1285, 11
, pp. 119
–192
.11.
Kerstein
, A. R.
, 1992, “Linear Eddy Modeling of Turbulent Transport. Part 7 Finite Rate Chemistry and Multi-Stream Mixing
,” J. Fluid Mech.
0022-1120, 240
, pp. 289
–313
.12.
McMurtry
, P. A.
, Menon
, S.
, and Kerstein
, A. R.
, 1993, “Linear Eddy Modeling of Turbulent Combustion
,” Energy Fuels
0887-0624, 7
, pp. 817
–826
.13.
Calhoon
, W. H.
, and Menon
, S.
, 1996, “Subgrid Modeling for Reacting Large-Eddy Simulations
,” AIAA Paper No. 96–0516.14.
Cook
, A. W.
, Riley
, J. J.
, and Kosaly
, G.
, 1997, “A Laminar Flamelet Approach to Subgrid-Scale Chemistry in Turbulent Flows
,” Combust. Flame
0010-2180, 109
, pp. 332
–341
.15.
Reveillon
, J.
, and Vervisch
, L.
, 1996, “Subgrid-Scale Turbulent Micromixing: Dynamic Approach
,” AIAA J.
0001-1452, 36
, pp. 336
–341
.16.
Colucci
, P. J.
, Jaberi
, F. A.
, Givi
, P.
, and Pope
, S. B.
, 1998, “Filtered Density Function for Large-Eddy Simulation of Turbulent Reacting Flows
,” Phys. Fluids
1070-6631, 10
, pp. 499
–515
.17.
Legier
, J. P.
, Poinsot
, T.
, and Veynante
, D.
, 2000, “Dynamically Thickened Flame LES Model for Premixed and Nonpremixed Turbulent Combustion
,” Proceedings 2000 Summer Program
, Center for Turbulence Research, NASA-Ames/Stanford University, pp. 157
–168
.18.
Pitsch
, H.
, and Steiner
, H.
, 2000, “Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D)
,” Phys. Fluids
1070-6631, 12
, pp. 2541
–2554
.19.
Steiner
, H.
, and Bushe
, W. K.
, 2001, “Large-Eddy Simulation of a Turbulent Reacting Jet With Conditional Source Term Estimation
,” Phys. Fluids
1070-6631, 13
, pp. 754
–769
.20.
Mittal
, R.
, and Moin
, P.
, 1997, “Suitability of Upwind Biased Schemes for Large-Eddy Simulation
,” AIAA J.
0001-1452, 30
(8
), pp. 1415
–1417
.21.
Arakawa
, A.
, 1966, “Computational Design for Long Term Numerical Integration of the Equations of Fluid Motion: Two-dimensional Incompressible Flow, Part I
,” J. Comput. Phys.
0021-9991, 1
, pp. 119
–143
.22.
Fromm
, J. E.
, and Harlow
, F. H.
, 1963, “Numerical Solution of the Problem of Vortex Street Development
,” Phys. Fluids
0031-9171, 6
, pp. 175
–182
.23.
Lilly
, D. K.
, 1965, “On the Computational Stability of Numerical Solutions of Time-Dependent Nonlinear Geophysical Fluid Dynamics Problems
,” Mon. Weather Rev.
0027-0644, 93
, pp. 11
–26
.24.
Mansour
, N. N.
, Moin
, P.
, Reynolds
, W. C.
, and Ferziger
, J. H.
, 1979, “Improved Methods for Large-Eddy Simulation of Turbulence
,” Proc. Turbulent Shear Flows I
, F.
Durst
, B. E.
Launder
, F. W.
Schmidt
, and J. H.
Whitelaw
, eds. Springer-Verlag
, Berlin
, pp. 386
–401
.25.
Germano
, M.
, Piomelli
, U.
, Moin
, P.
, and Cabot
, W. H.
, 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model
,” Phys. Fluids A
0899-8213, 3
(7
), pp. 1760
–1765
.26.
Lilly
, D. K.
, 1992, “A Proposed Modification of the Germano Subgrid-Scale Closure Method
,” Phys. Fluids A
0899-8213, 4
(3
), pp. 633
–635
.27.
Sommerfeld
, M.
, and Qiu
, H. H.
, 1991 “Detailed Measurements in a Swirling Particulate Two-Phase Flow by a Phase-Doppler Anemometer
,” Int. J. Heat Fluid Flow
0142-727X, 12
(1
), pp. 20
–28
.28.
Apte
, S. V.
, Mahesh
, K.
, Moin
, P.
, and Oefelein
, J. C.
, 2003a, “Large-Eddy Simulation of Swirling Particle-Laden Flow in a Coaxial-Jet Combustor
,” Int. J. Multiphase Flow
0301-9322, 29
(8
), pp. 1311
–1331
.29.
Apte
, S. V.
, Mahesh
, K.
, Ham
, F.
, Constantinescu
, G.
, and Moin
, P.
, 2003b, “Large-Eddy Simulation of Multiphase Flows in Complex Combustors
,” Computational Methods in Multiphase Flow II
, A. A.
Mammoli
and C. A.
Brebbia
, eds. WIT
, UK
, pp. 53
–62
.30.
Spadaccini
, L. J.
, Owen
, F. K.
, and Bowman
, C. T.
, 1976, “Influence of Aerodynamic Phenomena on Pollutant Formation in Combustion (Phase I. Gaseous fuels)
,” U.S. Environmental Protection Agency Report No. EPA-600/2-76-247a.Copyright © 2006
by American
Society of Mechanical Engineers
You do not currently have access to this content.