A superposition technique is introduced that allows for the application of discrete dislocation (DD) plasticity to a wide range of thermomechanical problems with reduced computational effort. Problems involving regions of differing elastic and/or plastic behavior are solved by superposing the solutions to i) DD models only for those regions of the structure where dislocation phenomena are permitted subject to either zero traction or displacement at every point on the boundary and ii) an elastic (EL) (or elastic/cohesive-zone) model of the entire structure subject to all desired loading and boundary conditions. The DD subproblem is solved with standard DD machinery for an elastically homogeneous material. The EL subproblem requires only a standard elastic or elastic/cohesive-zone finite element (FE) calculation. The subproblems are coupled: the negative of the tractions developed at the boundaries of the DD subproblem are applied as body forces in the EL subproblem, while the stress field of the EL subproblem contributes a driving force to the dislocations in the DD subproblem structure. This decomposition and the generic boundary conditions of the DD subproblem permit the DD machinery to be easily applied as a “black-box” constitutive material description in an otherwise elastic FE formulation and to be used in a broader scope of applications due to the overall enhanced computational efficiency. The method is validated against prior results for crack growth along a plastic/rigid bimaterial interface. Preliminary results for crack growth along a metal/ceramic bimaterial interface are presented.

1.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
, pp.
5109
5115
.
2.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
3.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity,” J. W. Hutchinson and T. T. Wu, eds.
,
Adv. Appl. Mech.
,
33
, pp.
295
361
.
4.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
50
, pp.
5
32
.
5.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
, pp.
1565
1595
.
6.
Shu
,
J. Y.
,
Fleck
,
N. A.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2001
, “
Boundary Layers in Con-Strained Plastic Flow: Comparison of Nonlocal and Discrete Dislocation Plasticity
,”
J. Mech. Phys. Solids
,
49
, pp.
1361
1395
.
7.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
, pp.
689
735
.
8.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1997
, “
Comparison of Discrete Dislocation and Continuum Plasticity Predictions for a Composite Material
,”
Acta Mater.
,
45
, pp.
3163
3179
.
9.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2000
, “
A Discrete Dislocation Analysis of Mode I Crack Growth
,”
J. Mech. Phys. Solids
,
48
, pp.
1133
1157
.
10.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2002
, “
Discrete Dislocation Modeling of Fatigue Crack Propagation
,”
Acta Mater.
,
50
, pp.
831
846
.
11.
Benzerga
,
A. A.
,
Hong
,
S. S.
,
Kim
,
K. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Smaller is Softer: An Inverse Size Effect in a Cast Aluminum Alloy
,”
Acta Mater.
,
49
, pp.
3071
3083
.
12.
Bittencourt
,
E.
,
Needleman
,
A.
,
Gurtin
,
M. E.
, and
Van der Giessen
,
E.
,
2003
, “
A Comparison of Nonlocal Continuum and Discrete Dislocation Plasticity Predictions
,”
J. Mech. Phys. Solids
,
51
, pp.
281
310
.
13.
Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics, Vol. II, I. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, 89–140.
14.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
,
2002
, “
A Coupled Atomistic/Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
,
50
, pp.
2085
2106
.
15.
Weygand
,
D.
,
Friedman
,
L. H.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2002
, “
Aspects of Boundary-Value Problem Solutions With Three-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
10
, pp.
437
468
.
16.
Hirth, J. P., and Lothe, J., 1968, Theory of Dislocations, McGraw-Hill, New York.
17.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
, pp.
98
103
.
18.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.
19.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1993
, “
The Influence of Plasticity on Mixed Mode Interface Toughness
,”
J. Mech. Phys. Solids
,
41
, pp.
1119
1135
.
20.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1994
, “
Effect of T-Stress on Mode I Crack Growth Resistance in a Ductile Solid
,”
Int. J. Solids Struct.
,
31
,
823
833
.
21.
Tvergaard
,
V.
,
1997
, “
Cleavage Crack Growth Resistance Due to Plastic Flow Around a Near-Tip Dislocation-Free Region
,”
J. Mech. Phys. Solids
,
45
, pp.
1007
1023
.
22.
Tvergaard
,
V.
,
1999
, “
Effect of Plasticity on Cleavage Crack Growth Resistance at an Interface
,”
J. Mech. Phys. Solids
,
47
, pp.
1095
1112
.
23.
Tvergaard
,
V.
,
2001
, “
Resistance Curves for Mixed Mode Interface Crack Growth Between Dissimilar Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
49
, pp.
2689
2703
.
24.
Suo
,
Z.
,
Shih
,
C. F.
, and
Varias
,
A. G.
,
1993
, “
A Theory for Cleavage Cracking in the Presence of Plastic Flow
,”
Acta Metall. Mater.
,
41
, pp.
1551
1557
.
25.
Xu
,
X.-P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mater. Sci. Eng.
,
1
, pp.
111
132
.
26.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Dislocation Dynamics is Chaotic
,”
Scr. Mater.
,
45
, pp.
1047
1053
.
27.
Liechti
,
K. M.
, and
Chai
,
Y. S.
,
1992
, “
Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear
,”
ASME J. Appl. Mech.
,
59
, pp.
295
304
.
28.
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2003
, “
Discrete Dislocation Plasticity Modeling of Short Cracks in Single Crystals
,”
Acta Mater.
,
51
,
1
15
.
29.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1997
, “
Steady-State Crack Growth and Work of Fracture for Solids Characterized by Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
45
, pp.
1253
1273
.
30.
Benzerga, A. A., and Needleman, A., work in progress.
31.
Bathe, K.-J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
You do not currently have access to this content.