In this paper Fourier transform is used to derive the analytical solution of a Kirchhoff plate on a viscoelastic foundation subjected to harmonic circular loads. The solution is first given as a convolution of the Green’s function of the plate. Poles of the integrand in the integral representation of the solution are identified for different cases of the foundation damping and the load frequency. The theorem of residue is then utilized to evaluate the generalized integral of the frequency response function. A closed-form solution is obtained in terms of the Bessel and Hankel functions corresponding to the frequency response function of the plate under a harmonic circular load. The result is partially verified by comparing the static solution of a point source obtained in this paper to a well-known result. This analytical representation permits one to construct fast algorithms for parameter identification in pavement nondestructive test.

1.
Bush, A. J., 1980, “Nondestructive Testing for Light Aircraft Pavements, Phase II. Development of the Nondestructive Evaluation Methodology,” Report NO. FAA RD-80-9, Final Report, Federal Aviation Administration.
2.
Uzan
,
J.
, and
Lytton
,
R.
, 1990, “Analysis of Pressure Distribution Under Falling Weight Deflectometer Loading,” J. Transport. Eng., ASCE, 116, No. 2.
3.
Haas, R., Hudson, W. R., and Zaniewski, J., 1994, Modern Pavement Management, Krieger, Malabar, FL.
4.
Hudson, W. R., Haas, R., and Uddin, W., 1997, Infrastructure Management: Integrating Design, Construction, Maintenance, Rehabilitation, and Renovation, McGraw-Hill, New York.
5.
Westergaard
,
H. M. S.
, 1926, “Stresses in Concrete Pavements Computed by Theoretical Analysis,” Public Roads, 7(2), Apr.
6.
Yoder, E. J., and Witczak, M. W., 1975, Principles of Pavement Design, John Wiley and Sons, New York.
7.
Scullion
,
T.
,
Uzan
,
J.
, and
Paredes
,
M.
, 1990, “MODULUS: A Microcomputer-Based Backcalculation System,” Transp. Res. Rec., 1260.
8.
Taheri, M. R., 1986, “Dynamic Response of Plates to Moving Loads,” Ph.D. thesis, Purdue University, West Lafayette, IN.
9.
Kukreti
,
A. R.
,
Taheri
,
M.
, and
Ledesma
,
R. H.
,
1992
, “
Dynamic Analysis of Rigid Airport Pavements With Discontinuities
,”
J. Transport. Eng., ASCE
,
118
(
3
), pp.
341
360
.
10.
Zaghloul, S. M., White, T. D., Drnevich, V. P., and Coree, B., 1994, “Dynamic Analysis of FWD Loading and Pavement Response Using a Three Dimensional Dynamic Finite Element Program,” Transportation Resource Board, Washington, D.C.
11.
Achenbach
,
J. D.
,
Keshava
,
S. P.
, and
Herrman
,
G.
,
1966
, “
Waves in a Smoothly Jointed Plate and Half Space
,”
J. Eng. Mech.
,
92
(
2
), pp.
113
129
.
12.
Freund
,
L. B.
, and
Achenbach
,
J. D.
,
1968
, “
Waves in a Semi-Infinite Plate in Smooth Contact With a Harmonically Distributed Half Space
,”
Int. J. Solids Struct.
,
4
, pp.
605
621
.
13.
Oien
,
M. A.
,
1973
, “
Steady Motion of a Plate on an Elastic Half Space
,”
ASME J. Appl. Mech.
,
40
(
2
), pp.
478
484
.
14.
Arnold
,
R. N.
,
Bycroft
,
G. N.
, and
Warburton
,
G. B.
,
1955
, “
Force Vibrations of a Body on an Infinite Elastic Solid
,”
ASME J. Appl. Mech.
,
77
, pp.
391
400
.
15.
Warburton
,
G. B.
,
1957
, “
Forced Vibration of a Body on an Elastic Stratum
,”
ASME J. Appl. Mech.
,
79
, pp.
55
57
.
16.
Bycroft
,
G. N.
,
1956
, “
Force Vibrations of a Rigid Circular Plate on a Semi-Infinite Elastic Space and on an Elastic Stratum
,”
Philos. Trans. R. Soc. London, Ser. A
,
248
, pp.
327
368
.
17.
Krenk
,
S.
, and
Schmidt
,
H.
,
1981
, “
Vibration of an Elastic Circular Plate on an Elastic Half-Space—A Direct Approach
,”
ASME J. Appl. Mech.
,
48
, pp.
161
168
.
18.
Sun
,
L.
,
2001
, “
A Closed-Form Solution of Bernoulli-Euler Beam on Viscoelastic Foundation Under Harmonic Line Loads
,”
J. Sound Vib.
,
242
(
4
), pp.
619
627
.
19.
Sun
,
L.
,
2001
, “
Closed-Form Representation of Beam Response to Moving Line Loads
,”
ASME J. Appl. Mech.
,
68
, pp.
348
350
.
20.
Sun
,
L.
, and
Deng
,
X.
,
1997
, “
Random Response of Beam Under a Moving Random Load in the Line Source Form
,”
Acta Mech. Sin.
,
29
(
3
), pp.
365
368
.
21.
Kenney
,
J. T.
,
1954
, “
Steady-State Vibrations of Beam on Elastic Foundation for Moving Load
,”
ASME J. Appl. Mech.
,
21
, p.
359
359
.
22.
Sun
,
L.
, and
Greenberg
,
B.
,
2000
, “
Dynamic Response of Linear Systems to Moving Stochastic Sources
,”
J. Sound Vib.
,
229
(
4
), pp.
957
972
.
23.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics: Part I and II, McGraw-Hill, New York.
24.
Eringen, A. C., and Suhubi, E. S., 1975, Elastodynamics, Vol. I and II, Academic Press, New York.
25.
Watson, G. N., 1966, A Treatise on the Theory of Bessel functions, 2nd Ed., Cambridge University Press, London.
26.
Saff, E. B., and Snider, A. D., 1993, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, 2nd Ed., Prentice-Hall, New York.
27.
Zhu, Z., Wang, B., and Guo, D., 1985, Pavement Mechanics, People’s Transport Publishing, Beijing, China.
28.
Timoshenko, S., and Woinowsky-Krieger, S., 1968, Theory of Plates and Shells, 2nd Ed., McGraw-Hill, New York.
29.
Ugural, A. C., 1981, Stresses in Plates and Shells, McGraw-Hill, New York.
You do not currently have access to this content.