A phenomenological constitutive law is developed for the deformation of polycrystalline ferroelastic materials. The model is framed within a thermodynamic setting common to internal variable plasticity. The two significant inputs to this model are a switching (yield) surface, and a hardening potential. To maintain simplicity, the shape of the switching surface is assumed to be spherical in a modified deviatoric stress space. In order to ascertain the functional form of the hardening potential, micromechanical self-consistent simulations of multiple single crystals, with tetragonal crystal structure, embedded in an effective polycrystalline matrix, are performed for differing loading paths in remanent (plastic) strain space. As a result of the asymmetry in the tension versus compression behavior of these materials, it is shown that pure shear loading does not result in pure shear straining. This feature of the material behavior is demonstrated with the self-consistent simulations and predicted by the phenomenological constitutive law. Ultimately, the phenomenological theory is able to capture the complex constitutive behavior of ferroelastic materials predicted by the micromechanical model.

1.
Fett
,
T.
,
Mu¨ller
,
S.
,
Munz
,
D.
, and
Thun
,
G.
,
1998
, “
Nonsymmetry in the Deformation Behavior of PZT
,”
J. Mater. Sci. Lett.
,
17
, pp.
261
265
.
2.
Fett
,
T.
, and
Thun
,
G.
,
1998
, “
Nonsymmetric Deformation Behavior of Lead Zirconate Titanate Determined in Bending Tests
,”
J. Am. Ceram. Soc.
,
81
, pp.
269
272
.
3.
Karastamatis
,
T.
,
Lupascu
,
D.
,
Lucato
,
S.
, and
Lynch
,
C. S.
,
2001
, “
The Effect of Grain Size on the R-Curve Behavior of Lead Zirconate Titanate
,”
Proc. SPIE
,
4333
, pp.
38
40
.
4.
Landis
,
C. M.
, and
McMeeking
,
R. M.
,
1999
, “
A Phenomenological Constitutive Law for Ferroelastic Switching and a Resulting Asymptotic Crack Tip Solution
,”
J. Intell. Mater. Syst. Struct.
,
10
, pp.
155
163
.
5.
Huber
,
J. E.
, and
Fleck
,
N. A.
,
2001
, “
Multi-Axial Electrical Switching of a Ferroelectric: Theory versus Experiment
,”
J. Mech. Phys. Solids
,
49
, pp.
785
811
.
6.
Landis
,
C. M.
,
2002
, “
Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics
,”
J. Mech. Phys. Solids
,
50
, pp.
127
152
.
7.
Lu
,
W.
,
Fang
,
D. N.
,
Li
,
C. Q.
, and
Hwang
,
K. C.
,
1999
, “
Nonlinear Electric-Mechanical Behavior and Micromechanics Modelling of Ferroelectric Domain Evolution
,”
Acta Mater.
,
47
, pp.
2913
2926
.
8.
Fro¨lich, A., 2001, “Mikromechanisches Modell zur Ermittlung Effektiver Materialeigenschaften von Piezoelektrischen Polykristallen,” Dissertation thesis, Universita¨t Karlsruhe, Germany.
9.
Kamlah
,
M.
,
2001
, “
Ferroelectric and Ferroelastic Piezoceramics—Modeling and Electromechanical Hysteresis Phenomena
,”
Continuum Mech. Thermodyn.
,
13
, pp.
219
268
.
10.
Huber
,
J. E.
,
Fleck
,
N. A.
,
Landis
,
C. M.
, and
McMeeking
,
R. M.
,
1999
, “
A Constitutive Model for Ferroelectric Polycrystals
,”
J. Mech. Phys. Solids
,
47
, pp.
1663
1697
.
11.
Hill
,
R.
,
1965
, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
, pp.
89
101
.
12.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
13.
Hill
,
R.
,
1966
, “
Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip
,”
J. Mech. Phys. Solids
,
14
, pp.
95
102
.
14.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
, pp.
79
95
.
15.
Hutchinson
,
J. W.
,
1970
, “
Elastic-Plastic Behavior of Polycrystalline Metals and Composites
,”
Proc. R. Soc. London, Ser. A
,
319
, pp.
247
272
.
16.
Rice
,
J. R.
,
1970
, “
On the Structure of Stress-Strain Relations for Time-Dependent Plastic Deformation in Metals
,”
J. Appl. Mech.
,
37
, pp.
728
737
.
17.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Applications to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
, pp.
433
455
.
18.
Rice, J. R., 1975, “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,” in Constitutive Relations in Plasticity edited by A. S. Argon, MIT Press, Cambridge, Massachusetts, pp. 23–79.
You do not currently have access to this content.