Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.

1.
Paulino
,
G. H.
, and
Jin
,
Z.-H.
,
2001
, “
Correspondence Principle in Viscoelastic Functionally Graded Materials
,”
ASME J. Appl. Mech.
,
68
, pp.
129
132
.
2.
Reiter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
,
1997
, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
,
45
, pp.
1281
1302
.
3.
Noda
,
N.
,
1999
, “
Thermal Stresses in Functionally Graded Materials
,”
J. Therm. Stresses
,
22
, pp.
477
512
.
4.
Erdogan
,
F.
,
1995
, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
,
5
, pp.
753
770
.
5.
Paulino
,
G. H.
, and
Jin
,
Z.-H.
,
2001
, “
Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture
,”
ASME J. Appl. Mech.
,
68
, pp.
284
293
.
6.
Paulino
,
G. H.
, and
Jin
,
Z.-H.
,
2001
, “
A Crack in a Viscoelastic Functionally Graded Material Layer Embedded Between Two Dissimilar Homogeneous Viscoelastic Layers—Antiplane Shear Analysis
,”
Int. J. Fract.
,
68
,
283
303
.
7.
Jin
,
Z.-H.
, and
Paulino
,
G. H.
,
2002
, “
A Viscoelastic Functionally Graded Strip Containing a Crack Subjected to In-Plane Loading
,”
Eng. Fract. Mech.
,
69
, pp.
1769
1790
.
8.
Yang
,
Y. Y.
,
2000
, “
Time-Dependent Stress Analysis in Functionally Graded Materials
,”
Int. J. Solids Struct.
,
37
, pp.
7593
7608
.
9.
Paulino, G. H., Chan, Y. S., and Fannjiang, A. C., 2002, “Gradient Elasticity Theory for Mode III Fracture in Functionally Graded Materials—Part I. Crack Perpendicular to the Material Gradation,” ASME J. Appl. Mech., in press.
10.
Reddy
,
J. N.
,
2000
, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
663
684
.
11.
Aboudi
,
J.
,
Pindera
,
M. J.
, and
Arnold
,
S. M.
,
1997
, “
Microstructural Optimization of Functionally Graded Composites Subjected to a Thermal Gradient via the Coupled Higher-Order Theory
,”
Composites, Part B
,
28
, pp.
93
108
.
12.
Hirai
,
T.
,
1996
, “
Functionally Gradient Materials
,”
Mater. Sci. Technol.
, Vol.
17B
Processing of Ceramics, Part 2, R. J. Brook, ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp.
292
341
.
13.
Paulino, G. H., Jin, Z.-H., and Dodds, R. H., 2002, “Failure of Functionally Graded Materials,” Comprehensive Structural Integrity, Vol. 2, B. Karihaloo and W. G. Knauss, eds., Elsevier, New York, Chapter 13.
14.
Suresh, S., and Mortensen, A., 1998, Fundamentals of Functionally Graded Materials, Institute of Materials, London.
15.
Alex
,
R.
, and
Schovanec
,
L.
,
1996
, “
An Anti-Plane Crack in a Nonhomogeneous Viscoelastic Body
,”
Eng. Fract. Mech.
,
55
, pp.
727
735
.
16.
Herrmann
,
J. M.
, and
Schovanec
,
L.
,
1990
, “
Quasi-Static Mode III Fracture in a Nonhomogeneous Viscoelastic Body
,”
Acta Mech.
,
85
, pp.
235
249
.
17.
Herrmann
,
J. M.
, and
Schovanec
,
L.
,
1994
, “
Dynamic Steady-State Mode III Fracture in a Non-Homogeneous Viscoelastic Body
,”
Acta Mech.
,
106
, pp.
41
54
.
18.
Schovanec
,
L.
, and
Walton
,
J. R.
,
1987
, “
The Quasi-Static Propagation of a Plane Strain Crack in a Power-Law Inhomogeneous Linearly Viscoelastic Body
,”
Acta Mech.
,
67
, pp.
61
77
.
19.
Schovanec
,
L.
, and
Walton
,
J. R.
,
1987
, “
The Energy Release Rate for a Quasi-Static Mode I Crack in a Nonhomogeneous Linear Viscoelastic Body
,”
Eng. Fract. Mech.
,
28
, pp.
445
454
.
20.
Hilton, H. H., and Clements, J. R., 1964, “Formulation and Evaluation of Approximate Analogies for Transient Temperature Dependent Linear Visco-Elastic Media,” Proceedings of the Conference on Thermal Loading and Creep, Paper 12, pp. 6-17–6-24.
21.
Hashin
,
Z.
,
1965
, “
Viscoelastic Behavior of Heterogeneous Media
,”
ASME J. Appl. Mech.
,
32
, pp.
630
636
.
22.
Schapery
,
R. A.
,
1978
, “
A Method for Predicting Crack Growth in Nonhomogeneous Viscoelastic Media
,”
Int. J. Fract.
,
14
, pp.
293
309
.
23.
Christensen, R. M., 1971, Theory of Viscoelasticity, Academic Press, New York.
You do not currently have access to this content.