An analysis of the frictional mechanics of a steadily rotating belt drive is carried out using a physically appropriate creep-rate-dependent friction law. Unlike in belt-drive mechanics analyzed using a Coulomb friction law, the current analysis predicts no adhesion zones in the belt-pulley contact region. Regardless of this finding, for the limiting case of a creep-rate law approaching a Coulomb law, all predicted response quantities (including the extent of belt creep on each pulley) approach those predicted by the Coulomb law analysis. Depending on a slope parameter governing the creep-rate profile, one or two sliding zones exist on each pulley, which together span the belt-pulley contact region. Closed-form expressions are obtained for the tension distribution, the sliding-zone arc magnitudes, and the frictional and normal forces per unit length exerted on the belt. A sample two-pulley belt drive is analyzed further to determine its pulley angular velocity ratio and belt-span tensions. Results from this analysis are compared to a dynamic finite element solution of the same belt drive. Excellent agreement in predicted results is found. Due to the presence of arbitrarily large system rotations and a numerically friendly friction law, the analytical solution presented herein is recommended as a convenient comparison test case for validating friction-enabled dynamic finite element schemes.

1.
Euler
,
M. L.
,
1762
, “
Remarques sur l’effect du frottement dans l’equilibre
,”
Me´m. Acad. Sci., Berlin
,
pp.
265
278
.
2.
Grashof, B. G., 1883, Theoretische Maschinenlehre, Bd 2, Leopold Voss, Hamburg.
3.
Fawcett
,
J. N.
,
1981
, “
Chain and Belt Drives—A Review
,”
Shock Vib. Dig.
,
13
(
5
), pp.
5
12
.
4.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, London, Chap. 8.
5.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
,
2000
, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
,
67
, pp.
197
206
.
6.
Firbank
,
T. C.
,
1970
, “
Mechanics of the Belt Drive
,”
Int. J. Mech. Sci.
,
12
, pp.
1053
1063
.
7.
Gerbert, G. G., 1991, “On Flat Belt Slip,” Vehicle Tribology (Tribology Series 16), Elsevier, Amsterdam, pp. 333–339.
8.
Gerbert
,
G. G.
,
1996
, “
Belt Slip—A Unified Approach
,”
ASME J. Mech. Des.
,
118
, pp.
432
438
.
9.
Townsend
,
W. T.
, and
Salisbury
,
J. K.
,
1988
, “
The Efficiency Limit of Belt and Cable Drives
,”
ASME J. Mech., Transm., Autom. Des.
,
110
, pp.
303
307
.
10.
Barker, C. R., Oliver, L. R., and Brieg, W. F., 1991, “Dynamic Analysis of Belt Drive Tension Forces During Rapid Engine Acceleration,” SAE Congress, Detroit, MI, Paper No. 910687, pp. 239–254.
11.
Hwang
,
S. J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
71
78
.
12.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
406
413
.
13.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
567
574
.
14.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1997
, “
Design and Analysis of Automotive Serpentine Belt Drive Systems for Steady State Performance
,”
ASME J. Mech. Des.
,
119
, pp.
162
168
.
15.
Leamy, M. J., Perkins, N. C., Barber, J. R., and Meckstroth, R. J., 1997, “The Influence of Tensioner Friction on Accessory Drive Dynamics,” 1997 SAE Noise & Vibration Conference and Expedition, Traverse City, MI, May 20–22, Paper No. 97NV103.
16.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vibr. Acoust.
,
120
, pp.
909
916
.
17.
Kraver
,
T. C.
,
Fan
,
G. W.
, and
Shah
,
J. J.
,
1996
, “
Complex Modal Analysis of a Flat Belt Pulley System With Belt Damping and Coulomb-Damped Tensioner
,”
ASME J. Mech. Des.
,
118
, pp.
306
311
.
18.
Leamy
,
M. J.
,
Barber
,
J. R.
, and
Perkins
,
N. C.
,
1998
, “
Distortion of a Harmonic Elastic Wave Reflected From a Dry Friction Support
,”
ASME J. Appl. Mech.
,
65
, pp.
851
857
.
19.
Leamy, M. J., Barber, J. R., and Perkins, N. C., 1998, “Dynamics of Belt/Pulley Frictional Contact,” IUTAM Symposium on Unilateral Multibody Contacts, Proceedings, Munich, Aug. 3–7, Kluwer Academic Press, Dordrecht, The Netherlands, pp. 277–286.
20.
Leamy, M. J., 1998, “The Influence of Dry Friction in the Dynamic Response of Accessory Belt Drive Systems,” doctoral dissertation, The University of Michigan.
21.
Leamy, M. J., and Wasfy, T., 2001, “Dynamic Finite Element Modeling of Belt Drives,” 18th Biennial Conference on Mechanical Vibration and Noise, ASME International 2001 DETC.
22.
Oden
,
J. T.
, and
Martins
,
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
, pp.
527
634
.
23.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Analysis of Motion Resisted by Friction. II. Velocity-Dependent Friction
,”
Mech. Struct. Mach.
,
19
(
4
), pp.
501
526
.
24.
Begley
,
C. J.
, and
Virgin
,
L. N.
,
1997
, “
A Detailed Study of the Low-Frequency Periodic Behavior of a Dry Friction Oscillator
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
491
497
.
You do not currently have access to this content.