This paper presents the response of symmetric crossply laminated shallow shells with an internal resonance ω2ω3, where ω2 and ω3 are the linear natural frequencies of the asymmetric vibration modes (2,1) and (1,2), respectively. Galerkin’s procedure is applied to the nonlinear governing equations for the shells based on the von Ka´rma´n-type geometric nonlinear theory and the first-order shear deformation theory, and the shooting method is used to obtain the steady-state response when a driving frequency Ω is near ω2. In order to take into account the influence of quadratic nonlinearities, the displacement functions of the shells are approximated by the eigenfunctions for the linear vibration mode (1,1) in addition to the ones for the modes (2,1) and (1,2). This approximation overcomes the shortcomings in Galerkin’s procedure. In the numerical examples, the effect of the (1,1) mode on the primary resonance of the (2,1) mode is examined in detail, which allows us to conclude that the consideration of the (1,1) mode is indispensable for analyzing nonlinear vibrations of asymmetric vibration modes of shells.

1.
Chia, C. Y., 1980, Nonlinear Analysis of Plates, McGraw-Hill, New York.
2.
Chia
,
C. Y.
,
1988
, “
Geometrically Nonlinear Behavior of Composite Plates: A Review
,”
ASME Appl. Mech. Rev.
,
41
, pp.
439
451
.
3.
Sathyamoorthy
,
M.
,
1987
, “
Nonlinear Vibration Analysis of Plates: A Review and Survey of Current Developments
,”
ASME Appl. Mech. Rev.
,
40
, pp.
1553
1561
.
4.
Fu
,
Y. M.
, and
Chia
,
C. Y.
,
1989
, “
Multi-Mode Non-Linear Vibration and Post-buckling of Anti-Symmetric Imperfect Angle-Ply Cylindrical Thick Panels
,”
Int. J. Non-Linear Mech.
,
24
, pp.
365
381
.
5.
Fu
,
Y. M.
, and
Chia
,
C. Y.
,
1993
, “
Non-Linear Vibration and Postbuckling of Generally Laminated Circular Cylindrical Thick Shells With Non-Uniform Boundary Conditions
,”
Int. J. Non-Linear Mech.
,
28
, pp.
313
327
.
6.
Raouf
,
R. A.
, and
Palazotto
,
A. N.
,
1994
, “
On the Non-Linear Free Vibrations of Curved Orthotropic Panels
,”
Int. J. Non-Linear Mech.
,
29
, pp.
507
514
.
7.
Xu
,
C. S.
,
Xia
,
Z. Q.
, and
Chia
,
C. Y.
,
1996
, “
Non-Linear Theory and Vibration Analysis of Laminated Truncated, Thick, Conical Shells
,”
Int. J. Non-Linear Mech.
,
31
, pp.
139
154
.
8.
Cheung
,
Y. K.
, and
Fu
,
Y. M.
,
1995
, “
Nonlinear Static and Dynamic Analysis for Laminated, Annular, Spherical Caps of Moderate Thickness
,”
Nonlinear Dyn.
,
8
, pp.
251
268
.
9.
Hadian
,
J.
,
Nayfeh
,
A. H.
, and
Nayfeh
,
J. F.
,
1995
, “
Modal Interaction in the Response of Antisymmetric Cross-ply Laminated Rectangular Plates
,”
J. Vib. Control
,
1
, pp.
159
182
.
10.
Abe
,
A.
,
Kobayashi
,
Y.
, and
Yamada
,
G.
,
1998
, “
Two-Mode Response of Simply Supported, Rectangular Laminated Plates
,”
Int. J. Non-Linear Mech.
,
33
, pp.
675
690
.
11.
Abe
,
A.
,
Kobayashi
,
Y.
, and
Yamada
,
G.
,
1998
, “
Internal Resonance of Rectangular Laminated Plates With Degenerate Modes
,”
JSME Int. J., Ser. C
,
41
, pp.
718
726
.
12.
Abe
,
A.
,
Kobayashi
,
Y.
, and
Yamada
,
G.
,
1998
, “
Three-Mode Response of Simply Supported, Rectangular Laminated Plates
,”
JSME Int. J., Ser. C
,
41
, pp.
51
59
.
13.
Yasuda
,
K.
, and
Kushida
,
G.
,
1984
, “
Nonlinear Forced Oscillations of a Shallow Spherical Shell
,”
Bull. JSME
,
27
, pp.
2233
2240
.
14.
Nayfeh
,
A. H.
, and
Raouf
,
R. A.
,
1987
, “
Nonlinear Forced Response of Infinitely Long Circular Cylindrical Shells
,”
ASME J. Appl. Mech.
,
54
, pp.
571
577
.
15.
Nayfeh
,
A. H.
,
Raouf
,
R. A.
, and
Nayfeh
,
J. F.
,
1991
, “
Nonlinear Response of Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads
,”
ASME J. Appl. Mech.
,
58
, pp.
1033
1041
.
16.
Chin
,
C.
, and
Nayfeh
,
A. H.
,
1996
, “
Bifurcation and Chaos in Externally Excited Circular Cylindrical Shells
,”
ASME J. Appl. Mech.
,
63
, pp.
565
574
.
17.
Chia
,
C. Y.
,
1987
, “
Nonlinear Vibration and Postbuckling of Unsymmetrically Laminated Imperfect Shallow Cylindrical Panels with Mixed Boundary Conditions Resting on Elastic Foundation
,”
Int. J. Eng. Sci.
,
25
, pp.
427
441
.
18.
Yamaguchi
,
T.
, and
Nagai
,
K.
,
1997
, “
Chaotic Vibrations of Cylindrical Shell-Panel With an In-Plane Elastic-Support at Boundary
,”
Nonlinear Dyn.
,
13
, pp.
259
277
.
19.
Eslami
,
H.
, and
Kandil
,
O. H.
,
1989
, “
Nonlinear Forced Vibration of Orthotropic Rectangular Plates using Method of Multiple Scales
,”
AIAA J.
,
27
, pp.
961
967
.
20.
Sassi
,
S.
,
Thomas
,
M.
, and
Laville
,
F.
,
1996
, “
Dynamic Response Obtained by Direct Numerical Integration for Pre-Deformed Rectangular Plates Subjected to In-Plane Loading
,”
J. Sound Vib.
,
191
, pp.
67
83
.
21.
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics, John Wiley and Sons, New York.
22.
Tamura
,
H.
, and
Matsuzaki
,
K.
,
1996
, “
Numerical Scheme and Program for the Solution and Stability Analysis of a Steady Periodic Vibration Problem
,”
JSME Int. J., Ser. C
,
39
, pp.
456
463
.
23.
Vinson, J. R., and Seerakowski, R. L., 1986, The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff Publishers, Dordrecht.
24.
Kobayashi
,
Y.
, and
Leissa
,
A. W.
,
1995
, “
Large Amplitude Free Vibration of Thick Shallow Shells Supported by Shear Diaphragms
,”
Int. J. Non-Linear Mech.
,
30
, pp.
57
66
.
25.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
, pp.
285
317
.
You do not currently have access to this content.