End effects or displacements and stresses of a self-equilibrated state in an inhomogeneous, anisotropic cylinder are represented by eigendata extracted from an algebraic eigensystem. Such states are typical of traction and/or displacement boundary conditions that do not abide by the distributions according to Saint-Venant’s solutions, whose construction were discussed in the first paper of this series of three. This type of analysis of end effects quantitifies Saint-Venant’s principle, and the algebraic eigensystem providing the eigendata is based on homogeneous displacement equations of equilibrium with an exponential decaying displacement form. The real parts of the eigenvalues convey information on the inverse decay lengths and their corresponding eigenvectors are displacement distributions of self-equilibrated states. Stress eigenvetors can be formed by appropriate differentiation of the displacement eigenvectors. The eigensystem and its adjoint system provide complete sets of right and left-handed eigenvectors that are interrelated by two bi-orthogonality relations. Displacement and stress end effects can be represented by means of an expansion theorem based on these bi-orthogonality relations or by a least-squares solution. Two examples, a beam with a homogeneous, isotropic cross section and the other of a two layer beam with a ±30 deg angle-ply composite cross section, are given to illustrate the representation of various end effects.

1.
Dong
,
S. B.
,
Kosmatka
,
J. B.
, and
Lin
,
H. C.
,
2001
, “
On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder, Part I: Methodology for Saint-Venant Solutions
,”
ASME J. Appl. Mech.
,
68
,
376
381
.
2.
de Saint-Venant
,
A. J. C. B.
,
1856
, “
Memoire sur la Torsion des Prismes
,”
Mem. Savants Etrangers
,
14
, pp.
233
560
.
3.
de Saint-Venant
,
A. J. C. B.
,
1856
, “
Memoire sur la Flexion des Prismes
,”
J. Math. Liouville, Ser. II
,
1
, pp.
89
189
.
4.
Johnson
,
M. W.
, and
Little
,
R. W.
,
1965
, “
The Semi-Infinite Strip
,”
Quarterly Appl. Math.
,
22
, pp.
335
344
.
5.
Little
,
R. W.
, and
Childs
,
S. B.
,
1967
, “
Elastostatic Boundary Region Problem in Solid Cylinders
,”
Q. Appl. Math.
,
25
, pp.
261
274
.
6.
Synge
,
J. L.
,
1945
, “
The Problem of Saint Venant for a Cylinder With Free Sides
,”
Q. Appl. Math.
,
2
, pp.
307
317
.
7.
Toupin
,
R. A.
,
1965
, “
Saint-Venant’s Principle
,”
Arch. Ration. Mech. Anal.
,
18
, pp.
83
96
.
8.
Knowles
,
J. K.
,
1966
, “
On Saint-Venant’s Principle in the Two-Dimensional Linear Theory of Elasticity
,”
Arch. Ration. Mech. Anal.
,
21
, pp.
1
22
.
9.
Horgan
,
C. O.
, and
Knowles
,
J. K.
,
1983
, “
Recent Developments Concerning Saint-Venant Principle
,”
Adv. Appl. Mech.
,
23
, pp.
179
269
.
10.
Horgan
,
C. O.
,
1989
, “
Recent Developments Concerning Saint-Venant Principle: An Update
,”
Appl. Mech. Rev.
,
42
, No.
11
, pp.
295
303
.
11.
Rao
,
N. R.
, and
Valsarajan
,
K. V.
,
1980
, “
Saint-Venant’s Principle in Sandwich Strip
,”
Comput. Struct.
,
12
, pp.
185
188
.
12.
Dong
,
S. B.
, and
Goetschel
,
D. B.
,
1982
, “
Finite Element Analysis of Edge Effects in Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
49
, pp.
129
135
.
13.
Glavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
, pp.
403
413
.
14.
Huang
,
K. H.
, and
Dong
,
S. B.
,
1984
, “
Propagating Waves and Standing Vibrations in a Composite Cylinder
,”
J. Sound Vib.
,
96
, No.
3
, pp.
363
379
.
15.
Okumura
,
H.
,
Yokouchi
,
Y.
,
Watanabe
,
K.
, and
Yamada
,
Y.
,
1985
, “
Local Stress Analysis of Composite Materials Using Finite Element Methods: 1st Report, Saint-Venant End Effects in Laminate Media
,”
Trans. Jpn. Soc. Mech. Eng.
,
51
, pp.
563
570
.
16.
Goetschel
,
D. B.
, and
Hu
,
T. H.
,
1985
, “
Quantification of Saint-Venant’s Principle for a General Prismatic Member
,”
Comput. Struct.
,
21
, pp.
869
874
.
17.
Kazic
,
M.
, and
Dong
,
S. B.
,
1990
, “
Analysis of Restrained Torsion
,”
J. Eng. Mechanics Division
116
, No.
4
, pp.
870
891
.
18.
Gregory
,
R. D.
, and
Gladwell
,
I.
,
1982
, “
The Cantilever Beam Under Tension, Bending or Flexure at Infinity
,”
J. Elast.
,
4
, pp.
317
343
.
19.
Horgan
,
C. O.
,
1982
, “
Saint-Venant End Effects in Composites
,”
J. Compos. Mater.
,
16
, pp.
411
422
.
20.
Savoia
,
M.
, and
Tullini
,
N.
,
1996
, “
Beam Theory for Strongly Orthotropic Materials
,”
Int. J. Solids Struct.
,
33
, No.
17
, pp.
2459
2484
.
21.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2000
, “
The Generalized Plane Strain Deformation of Thick Anisotropic Composite Plates
,”
Int. J. Solids Struct.
,
37
, No.
5
, pp.
715
733
.
22.
Choi
,
I.
, and
Horgan
,
C. O.
,
1977
, “
Saint-Venant’s Principle and End Effects in Anisotropic Elasticity
,”
ASME J. Appl. Mech.
,
44
, pp.
424
430
.
23.
Choi
,
I.
, and
Horgan
,
C. O.
,
1978
, “
Saint-Venant End Effects for Plane Deformation Sandwich Strips
,”
Int. J. Solids Struct.
,
14
, pp.
187
195
.
You do not currently have access to this content.