In this paper, a crack in a strip of a viscoelastic functionally graded material is studied under antiplane shear conditions. The shear relaxation function of the material is assumed as μ=μ0expβy/hft, where h is a length scale and f(t) is a nondimensional function of time t having either the form ft=μ/μ0+1μ/μ0expt/t0 for a linear standard solid, or ft=t0/tq for a power-law material model. We also consider the shear relaxation function μ=μ0expβy/h[t0expδy/h/t]q in which the relaxation time depends on the Cartesian coordinate y exponentially. Thus this latter model represents a power-law material with position-dependent relaxation time. In the above expressions, the parameters β, μ0,μ,t0; δ, q are material constants. An elastic crack problem is first solved and the correspondence principle (revisited) is used to obtain stress intensity factors for the viscoelastic functionally graded material. Formulas for stress intensity factors and crack displacement profiles are derived. Results for these quantities are discussed considering various material models and loading conditions.

1.
Orihara, K., 1999, “Self-Assembly of Functionally Graded Plastics by a Particular Phase Separation of Polymer Blend and Its Applications,” Fifth U.S. National Congress on Computational Mechanics, Book of Abstracts, pp. 399–400.
2.
Pompe
,
W.
,
Lampenscherf
,
S.
,
Ro¨ssler
,
S.
,
Scharnweber
,
D.
,
Weis
,
K.
,
Worch
,
H.
, and
Hofinger
,
J.
,
1999
, “
Functionally Graded Bioceramics
,”
Mater. Sci. Forum
,
308–311
, pp.
325
330
.
3.
Nogata
,
F.
, and
Takahashi
,
H.
,
1995
, “
Intelligent Functionally Graded Material: Bamboo
,”
Composites Eng.
,
5
, pp.
743
751
.
4.
Hirano
,
T.
,
Teraki
,
J.
, and
Nishio
,
Y.
,
1999
, “
Computational Design for Functionally Graded Thermoelectric Materials
,”
Mater. Sci. Forum
,
308–311
, pp.
641
646
.
5.
Reiter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
,
1997
, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
,
45
, pp.
1281
1302
.
6.
Reiter
,
T.
, and
Dvorak
,
G. J.
,
1998
, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Mech. Phys. Solids
,
46
, pp.
1655
1673
.
7.
Gasik
,
M. M.
,
1998
, “
Micromechanical Modelling of Functionally Graded Materials
,”
Comput. Mater. Sci.
,
13
, pp.
42
55
.
8.
Aboudi
,
J.
,
Pindera
,
M. J.
, and
Arnold
,
S. M.
,
1999
, “
Higher-Oder Theory for Functionally Graded Materials
,”
Composites, Part B
,
30B
, pp.
777
832
.
9.
Kawasaki
,
A.
, and
Watanabe
,
R.
,
1987
, “
Finite Element Analysis of Thermal Stress of the Metals/Ceramics Multi-Layer Composites with Controlled Compositional Gradients
,”
J. Jpn. Inst. Met.
,
51
, pp.
525
529
.
10.
Noda
,
N.
,
1999
, “
Thermal Stresses in Functionally Graded Materials
,”
J. Therm. Stresses
,
22
, pp.
477
512
.
11.
Praveen
,
G. N.
, and
Reddy
,
J. N.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
, pp.
4457
4476
.
12.
Kolednik
,
O.
,
2000
, “
The Yield Stress Gradient Effect in Inhomogeneous Materials
,”
Int. J. Solids Struct.
,
37
, pp.
781
808
.
13.
Paulino
,
G. H.
,
Fannjiang
,
A. C.
, and
Chan
,
Y. S.
,
1999
, “
Gradient Elasticity Theory for a Mode III Crack in a Functionally Graded Material
,”
Mater. Sci. Forum
,
308–311
, pp.
971
976
.
14.
Cai
,
H.
, and
Bao
,
G.
,
1998
, “
Crack Bridging in Functionally Graded Coatings
,”
Int. J. Solids Struct.
,
35
, pp.
701
717
.
15.
Erdogan
,
F.
,
1995
, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
,
5
, pp.
753
770
.
16.
Jin
,
Z.-H.
, and
Batra
,
R. C.
,
1996
, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
44
, pp.
1221
1235
.
17.
Becker
, Jr.,
T. L.
,
Cannon
,
R. M.
, and
Ritchie
,
R. O.
,
1999
, “
A Statistical RKR Fracture Model for the Brittle Fracture of Functionally Graded Materials
,”
Mater. Sci. Forum
,
308–311
, pp.
957
962
.
18.
Rice, J. R., 1968, “Mathematical Analysis in the Mechanics of Fracture,” Fracture—An Advanced Treatise, Vol. II, H. Liebowitz, ed., Pergamon Press, Oxford, pp. 191–311.
19.
Paulino
,
G. H.
,
Saif
,
M. T. A.
, and
Mukherjee
,
S.
,
1993
, “
A Finite Elastic Body With a Curved Crack Loaded in Anti-Plane Shear
,”
Int. J. Solids Struct.
,
30
, pp.
1015
1037
.
20.
Erdogan
,
F.
,
1985
, “
The Crack Problem for Bonded Nonhomogeneous Materials Under Antiplane Shear Loading
,”
ASME J. Appl. Mech.
,
52
, pp.
823
828
.
21.
Ang
,
W. T.
,
Clements
,
D. L.
, and
Cooke
,
T.
,
1999
, “
A Hypersingular Boundary Integral Equation for Antiplane Crack Problems for a Class of Inhomogeneous Anisotropic Elastic Materials
,”
Eng. Anal. Boundary Elem.
,
23
, pp.
567
572
.
22.
Atkinson
,
C.
, and
Chen
,
C. Y.
,
1996
, “
The Influence of Layer Thickness on the Stress Intensity Factor of a Crack Lying in an Elastic (Viscoelastic) Layer Embedded in a Different Elastic (Viscoelastic) Medium (Mode III Analysis)
,”
Int. J. Eng. Sci.
,
34
, pp.
639
658
.
23.
Paulino
,
G. H.
, and
Jin
,
Z.-H.
,
2001
, “
Correspondence Principle in Viscoelastic Functionally Graded Materials
,”
ASME J. Appl. Mech.
,
68
, pp.
129
132
.
24.
Christensen, R. M., 1971, Theory of Viscoelasticity, Academic Press, New York.
25.
Hirai, T., 1996, “Functionally Gradient Materials,” Materials Science and Technology, 17B: Processing of Ceramics, Part 2 R. J. Brook, ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp. 292–341.
26.
Ogorkiewicz, R. M., 1970, Engineering Properties of Thermoplastics, John Wiley and Sons, London.
27.
Lambros
,
J.
,
Santare
,
M. H.
,
Li
,
H.
, and
Sapna
, III,
G. H.
,
1999
, “
A Novel Technique for the Fabrication of Laboratory Scale Model Functionally Graded Materials
,”
Exp. Mech.
,
39
, pp.
184
190
.
28.
Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solution of Singular Integral Equations,” Mechanics of Fracture, Vol. 1, G. C. Sih, ed., Noordhoff, Leyden, pp. 368–425.
29.
Broberg, K. B., 1999, Cracks and Fracture, Academic Press, London.
30.
Tada, H., Paris, P., and Irwin, G., 1973, The Stress Analysis of Cracks Handbook, Del Research Corporation, Helletown, PA.
You do not currently have access to this content.