1.
Cheng
Z. Q.
,
Wang
X. X.
, and
Huang
M. G.
,
1993
a, “
Large Deflections of Rectangular Hoff Sandwich Plates
,”
International Journal of Solids and Structures
, Vol.
30
, pp.
2335
2346
.
2.
Cheng
Z. Q.
,
Wang
X. X.
, and
Huang
M. G.
,
1993
b, “
Nonlinear Flexural Vibration of Rectangular Moderately Thick Plates and Sandwich Plates
,”
International Journal of Mechanical Sciences
, Vol.
35
, pp.
815
827
.
3.
Cheng
Z. Q.
,
Wang
X. X.
, and
Huang
M. G.
,
1994
, “
Postbuckling of Rectangular Moderately Thick Plates and Sandwich Plates
,”
Applied Mathematics and Mechanics
, Vol.
15
, pp.
605
610
.
4.
Hu
H. C.
,
1963
, “
On Some Problems of the Antisymmetrical Small Deflection of Isotropic Sandwich Plates
,”
Acta Mechanica Sinica
, Vol.
6
, pp.
53
60
(in Chinese).
5.
Librescu, L., 1975, Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures, Noordhoff, Leyden, The Netherlands.
6.
Librescu
L.
, and
Stein
M.
,
1992
, “
Postbuckling of Shear Deformable Composite Flat Panels Taking Into Account Geometrical Imperfections
,”
AIAA Journal
, Vol.
30
, pp.
1352
1360
.
7.
Liu
R. H.
, and
Cheng
Z. Q.
,
1993
, “
Nonlinear Bending of Simply Supported Rectangular Sandwich Plates
,”
Applied Mathematics and Mechanics
, Vol.
14
, pp.
217
234
.
8.
Mindlin
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
18
, pp.
31
38
.
9.
Noor
A. K.
, and
Burton
W. S.
,
1989
, “
Assessment of Shear Deformation Theories for Multilayered Composite Plates
,”
ASME Applied Mechanics Reviews
, Vol.
42
, pp.
1
13
.
10.
Qin
Q. H.
,
1993
, “
Nonlinear Analysis of Reissner Plates on an Elastic Foundation by the BEM
,”
International Journal of Solids and Structures
, Vol.
30
, pp.
3101
3111
.
11.
Reddy
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
51
, pp.
745
752
.
12.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, FL.
13.
Reddy
J. N.
, and
Robbins
D. H.
,
1994
, “
Theories and Computational Models for Composite Laminates
,”
ASME Applied Mechanics Reviews
, Vol.
47
, pp.
147
169
.
14.
Reddy, J. N., and Wang, C. M., 1998, “Deflection Relationships Between the Classical and Third-Order Plate Theories,” Acta Mechanica, in press.
15.
Reissner
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
12
, pp.
A69–A77
A69–A77
.
16.
Reissner
E.
,
1948
, “
Finite Deflections of Sandwich Plates
,”
Journal of the Aeronautical Sciences
, Vol.
15
, pp.
435
440
.
17.
Reissner
E.
,
1985
, “
Reflections on the Theory of Elastic Plates
,”
ASME Applied Mechanics Reviews
, Vol.
38
, pp.
1453
1464
.
18.
Wang
C. M.
,
1995
, “
Deflection of Sandwich Plates in Terms of Corresponding Kirchhoff Plate Solutions
,”
Archive of Applied Mechanics
, Vol.
65
, pp.
408
414
.
19.
Wang
C. M.
, and
Alwis
W. A. M.
,
1995
, “
Simply Supported Polygonal Mindlin Plate Deflections Using Kirchhoff Plates
,”
Journal of Engineering Mechanics
, Vol.
121
, pp.
1383
1385
.
This content is only available via PDF.

Article PDF first page preview

First page of Exact Connection Between Deflections of the Classical and Shear Deformation Laminated Plate Theories
You do not currently have access to this content.