This paper investigates the use of mass-spring type of impedances as absorbing elements for interior noise control. The general modal formulation for a one-dimensional acoustic system terminated by a spring-supported piston is presented. The boundary value problem has a nonself-adjoint operator which renders the mode functions unorthogonal. This is overcome by defining an associated self-adjoint operator in Hilbert space and using an operator-theoretic formulation of the problem. Orthogonal mode functions and an expansion theorem are presented which can be used to construct a series solution for the forced response. A numerical study is performed for the case of single frequency excitation in which the impedance parameters are optimized by minimizing the cost function. The results from the numerical simulations indicate the feasibility of interior noise control using tunable mechanical impedances, and provide guidelines and restrictions in designing such a system.

1.
Bauer
W. F.
,
1953
, “
Modified Sturm-Liouville Systems
,”
Quarterly of Applied Mathematics
, Vol.
11
, pp.
273
282
.
2.
Bedout
J. M.
,
Franchek
M. A.
,
Bernhard
R. J.
, and
Mongeau
L.
,
1907
, “
Adaptive-Passive Noise Control with Self-Tuning Helmholtz Resonators
,”
Journal of Sound and Vibration
, Vol.
202
, No.
1
, pp.
109
123
.
3.
Beyene
S.
, and
Burdisso
R. A.
,
1997
, “
A New Hybrid Passive/Active Noise Absorption System
,”
Journal of the Acoustical Society of America
, Vol.
101
, No.
3
, pp.
1512
1515
.
4.
Churchill
R. V.
,
1942
, “
Expansions in Series of Non-Orthogonal Functions
,”
American Mathematical Society Bulletin
, Vol.
48
, pp.
143
149
.
5.
Darlington, P., and Avis, M. R., 1996, “Noise Control in Resonant Sound Fields Using Active Absorbers,” Inter-Noise 96, Liverpool, England, pp. 1121–1126.
6.
Doria
A.
,
1995
, “
Control of Acoustic Vibrations of an Enclosure by Means of Multiple Resonators
,”
Journal of Sound and Vibration
, Vol.
181
, No.
4
, pp.
673
685
.
7.
Fahy
F. J.
, and
Schofield
C.
,
1980
, “
A Note on the Interaction Between a Helmholtz Resonator and an Acoustic Mode of an Enclosure
,”
Journal of Sound and Vibration
, Vol.
72
, No.
3
, pp.
365
378
.
8.
Fulton
C. T.
,
1977
, “
Two-point Boundary Value Problems with Eigenvalue Parameter Contained in the Boundary Conditions
,”
Proceedings of the Royal Society of Edinburgh
, Vol.
77A
, pp.
293
308
.
9.
Furstoss
M.
,
Thenail
D.
, and
Galland
M. A.
,
1997
, “
Surface Impedance Control for Sound Absorption: Direct and Hybrid Passive/Active Strategies
,”
Journal of Sound and Vibration
, Vol.
203
, No.
2
, pp.
219
236
.
10.
Guicking
D.
, and
Karcher
K.
,
1984
, “
Active Impedance Control for One-Dimensional Sound
,”
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol.
106
, pp.
393
396
.
11.
Hinton
D. B.
,
1979
, “
An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in the Boundary Condition
,”
Quarterly Journal of Mathematics, Oxford Series (2)
, Vol.
30
, pp.
33
42
.
12.
Hull
A. J.
,
1994
, “
A Closed Form Solution of a Longitudinal Bar with a Viscous Boundary Condition
,”
Journal of Sound and Vibration
, Vol.
169
, No.
1
, pp.
19
28
.
13.
Hull
A. J.
, and
Radcliffe
C. J.
,
1992
, “
Experimental Verification of the Nonself-Adjoint State Space Duct Model
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
114
, pp.
404
408
.
14.
Hull
A. J.
,
Radcliffe
C. J.
, and
MacCluer
M. R.
,
1991
, “
State Estimation of the Nonself-Adjoint Acoustic Duct System
,”
ASME Journal of Dynamic Systems, Measurement, and Control
, Vol.
113
, pp.
122
126
.
15.
Hull
A. J.
,
Radcliffe
C. J.
,
Miklavcic
M.
, and
MacCluer
C. R.
,
1990
, “
State Space Representation if the Nonself-Adjoint Acoustic Duct System
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
112
, pp.
483
488
.
16.
Ibrahim, R., and Sleeman, B. D., 1981, Ordinary and Partial Differential Equations: Proceedings of the Sixth Conference held at Dundee, Scotland, March 31–April 4, 1980, Chapter, “A Regular Left-Definite Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions,” pp. 158–167, Springer-Verlag, Berlin, New York.
17.
Jayachandran
V.
,
Hirsch
S. M.
, and
Sun
J. Q.
,
1998
, “
On the Numerical Modeling of Interior Sound Fields by the Modal Function Expansion Approach
,”
Journal of Sound and Vibration
, Vol.
210
, No.
2
, pp.
243
254
.
18.
Jayachandran
V.
, and
Sun
J. Q.
,
1998
, “
Impedance Characteristics of Active Interior Noise Control Systems
,”
Journal of Sound and Vibration
, Vol.
211
, No.
4
, pp.
716
727
.
19.
Kuntz
H. L.
,
Prydz
R. A.
,
Balena
F. J.
, and
Gatineau
R. J.
,
1991
, “
Development and Testing of Cabin Sidewall Acoustic Resonators for the Reduction of Cabin Tone Levels in Propfan-Powered Aircraft
,”
Noise Control Engineering Journal
, Vol.
37
, No.
3
, pp.
129
142
.
20.
Lacour, O., Thenail, D., and Galland, M. A., 1997, “Actively Silencing a Cavity by Acoustic Impedance Changes,” Sixteenth Biennial Conference on Mechanical Vibration and Noise, ASME Design Engineering Technical Conferences, Sacramento, California.
21.
Marc, F., Denis, T., and Marie-Annick, G., 1996, “Actively Enhanced Porous Layers for Free Field Acoustic Absorption,” 3rd IC1M/ECSSM’96, Lyon, France, pp. 734–739.
22.
Martin
V.
, and
Bodrero
A.
,
1997
, “
An Introduction to the Control of Sound Fields by Optimising hapedance Locations on the Wall of an Acoustic Cavity
,”
Journal of Sound and Vibration
, Vol.
204
, No.
2
, pp.
331
357
.
23.
Mate, L., 1989, Hilbert Space Methods in Science and Engineering, IOP Publishing Ltd.
24.
Matsuhisa
H.
,
Ren
B.
, and
Sato
S.
,
1992
, “
Semiactive Control of Duct Noise by a Volume-Variable Resonator
,”
JSME International Journal, Series 111
, Vol.
35
, No.
2
, pp.
223
228
.
25.
Meynial, X., 1996, “Active Materials for Application in Room Acoustics,” 3rd ICIM/ECSSM’96, Lyon, France, pp. 968–973.
26.
Morgan
G. W.
,
1953
, “
Some Remarks on a Class of Eigenvalue Problems with Special Boundary Conditions
,”
Quarterly of Applied Mathematics
, Vol.
11
, pp.
157
165
.
27.
Nelson, P. A., and Elliott, S. J., 1992, Active Control of Sound, Academic Press Limited, San Diego, CA.
28.
Prater
G. J.
, and
Singh
R.
,
1990
, “
Eigenproblem Formulation, Solution and Interpretation for Non-Proportionally Damped Continuous Beams
,”
Joumlal of Sound and Vibration
, Vol.
143
, No.
1
, pp.
125
142
.
29.
Radcliffe, C. J., and Gogate, S. D., 1995, “An Analytical Active Acoustic Sink Controller Model for Wide Band Noise Control Applications,” ASME Annual Winter Meeting, San Francisco, California.
30.
Schneider
A.
,
1974
, “
A Note on Eigenvaluc Problems with Eigenparameter in the Boundary Conditions
,”
Mathematische Zeitschrift
, Vol.
136
, pp.
163
167
.
31.
Siagh
R.
,
Lyons
W. M.
, and
Prater
G. J.
,
1989
, “
Complex Eigensolution for Longitudinally Vibrating Bars with a Viscously Damped Boundary
,”
Journal of Sound and Vibration
, Vol.
133
, No.
2
, pp.
364
367
.
32.
Soule, J. L., 1968, Linear Operators in Hilbert Spaces, Gordon and Breach Science Pnblishers Inc, New York.
33.
Swanson, D. C., 1988, “The Role of Impedance Coupling in Achieving Global Active Attenuation of Noise,” ASME Winter Annual Meeting, Chicago, Illinois.
34.
Tichy
J.
,
1991
, “
Current and Future Issues of Active Noise Control
,”
Journal of Acoustical Society of Japan (E)
, Vol.
12
, No.
6
, pp.
255
262
.
35.
Titchmarsh, E. C., 1946, Eigenfunction Expansions Associated with Second Order Differential Equations, Oxford University Press.
36.
Walter
J.
,
1973
, “
Regular Eigenvalue Problems with Eigenvalne Parameter in the Boundary Condition
,”
Mathematische Zeitschrift
, Vol.
133
, pp.
301
312
.
37.
Wu
Z.
,
Bao
X.-Q.
,
Varadan
V. K.
, and
Varadan
V. V.
,
1993
, “
Broadband Active Acoustic Absorbing Coating with an Adaptive Digital Controller
,”
Journal of Smart Materials and Structures
, Vol.
2
, pp.
40
46
.
38.
Yang
B.
,
1996
, “
Integral Formulas for Nonself-Adjoint Distributed Dynamic Systems
,”
AIAA Journal
, Vol.
34
, No.
10
, pp.
2132
2139
.
39.
Yang
B.
, and
Tan
C. A.
,
1992
, “
Transfer Functions of One-Dimensional Distributed Parameter Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, No.
4
, pp.
1009
1014
.
40.
Yang
B.
, and
Wu
X.
,
1997
, “
Transient Response of One-Dimensional Distributed Systems: A Closed Form Eigenfunction Expansion Realization
,”
Journal of Sound and Vibration
, Vol.
208
, No.
5
, pp.
763
776
.
This content is only available via PDF.
You do not currently have access to this content.