This paper presents the dynamic analysis of multilayered plates using layer-wise mixed theories. With respect to existing two-dimensional theories at the displacement formulated, the proposed models a priori fulfill the continuity of transverse shear and normal stress components at each interface between two adjacent layers. A Reissner’s mixed variational equation is employed to derive the differential equations, in terms of the introduced stress and displacement variables, that govern the dynamic equilibrium and compatibility of each layer. The continuity conditions at the interfaces are used to write corresponding equations at multilayered level. Related standard displacement formulations, based on the principle of virtual displacements, are given for comparison purposes. Numerical results are presented for the free-vibration response (fundamental and higher order frequencies are calculated) of symmetrically and unsymmetrically laminated cross-ply plates. Several comparisons to three-dimensional elasticity analysis and to some available results, related to both layer-wise and equivalent single-layer theories, have shown that the presented mixed models: (1) match the exact three-dimensional results very well and (2) lead to a better description in comparison to results related to other available analysis.

1.
Bhashar
B.
, and
Varadan
T. K.
,
1989
, “
Refinement of Higher-Order laminated plate theories
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
27
, pp.
1830
1831
.
2.
Carrera
E.
,
1995
, “
A class of Two Dimensional Theories for Multilayered Plates Analysis
,”
Atti Academia delle Scienze di Torino, Mem Sci. Fis.
, Vol.
19–20
, pp.
49
87
.
3.
Carrera
E.
,
1997
, “
Cz0-Requirements: Models for the Two-Dimensional Analysis of Multilayered Structures
,”
Composite Structures
, Vol.
37
, pp.
373
384
.
4.
Carrera, E., 1998a, “Mixed Layer-Wise Models for Multilayered Plates Analyses,” preprint in DIAS Report No. 1/98, Politecnico di Torino, Torino, Italy.
5.
Carrera
E.
,
1998
b, “
Evaluation of Mixed Layer-Wise Models for Multilayered Plates Analyses
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
36
, No.
5
, pp.
830
839
.
6.
Cho
K. N.
,
Bert
C. W.
, and
Striz
A. G.
,
1991
, “
Free Vibrations of Laminated Rectangular Plates Analyzed by Higher order Individual-Layer Theory
,”
Journal of Sound and Vibration
, Vol.
145
, pp.
429
442
.
7.
Cho
M.
, and
Parmerter
R. R.
,
1993
, “
Efficient higher order composite plate theory for general lamination configurations
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
31
, pp.
1299
1305
.
8.
Di Sciuva
M.
,
1987
, “
An Improved Shear Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
589
586
.
9.
Hildebrand, F. B., Reissner, E., and Thomas, G. B., “Notes on the foundations of the theory of small displacement of orthotropic shells,” NACA TN-1833, Washington, DC.
10.
Jones, R. M., 1975, Mechanics of Composite Materials, McGraw-Hill, New York.
11.
Kant
T.
, and
Kommineni
J. R.
,
1989
, “
Large Amplitude Free Vibration Analysis of Cross-Ply Composite and Sandwich Laminates with a Refined Theory and C0 Finite Elements
,”
Computer & Structures
, Vol.
50
, pp.
123
134
.
12.
Kapania
R. K.
, and
Raciti
S.
,
1989
, “
Recent advances in analysis of laminated beams and plates
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
27
, pp.
923
946
.
13.
Kao
J.
, and
Ross
R. J.
,
1968
, “
Bending of Multilayer sandwich beams
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
6
, pp.
1583
1585
.
14.
Kheider
A. A.
, and
Librescu
L.
,
1988
, “
Analysis of Symmetric Cross-ply Laminated Elastic Plates Using a Higher order Theory: Part II—Buckling and Free Vibration
,”
Composite Structures
, Vol.
9
, pp.
259
277
.
15.
Kirchhoff
G.
,
1850
, “
U¨ber das Gleichwich und die Bewegung einer Elastischen Sheibe
,”
J. Angew. math.
, Vol.
40
, pp.
51
88
.
16.
Lekhnitskii, S. G., 1935, “Strength Calculation of Composite Beams,” Vestnik inzhen. i tekhnikov, No. 9.
17.
Librescu, L., and Reddy, J. N., 1987 “A Critical Review and Generalization of Transverse Shear Deformable Anisotropic Plates,” Refined dynamical Theories of Beams, Plates and Shells and their Applications, Euromech Colloquium 219, Kassel, Sept. 1996, I. Ellshakoff and H. Irretier, eds., Springer-Verlag, Berlin, pp. 32–43.
18.
Lo
K. H.
,
Christensen
R. M.
, and
Wu
E. M.
,
1977
, “
A Higher-Order Theory of Plate Deformation, Part II: Laminated Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
44
, pp.
669
676
.
19.
Mindlin
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
18
, pp.
1031
1036
:
20.
Mindlin
R. D.
,
Schacknow
A.
, and
Deresiewicz
H.
,
1956
, “
An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates
,”
Journal of Sound and Vibration
, Vol.
12
, pp.
187
195
.
21.
Murakami
H.
,
1986
, “
Laminated Composite Plate Theory With Improved In-Plane Response
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
53
, pp.
661
666
.
22.
Noor
A. K.
,
1973
, “
Free Vibration of Multilayered Plates
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
11
, pp.
1038
1039
.
23.
Noor
A. K.
, and
Burton
W. S.
,
1989
a, “
Stress and Free Vibration Analyses of Multilayered Composite Plates
,”
Composite Structures
, Vol.
11
, pp.
183
204
.
24.
Noor
A. K.
, and
Burton
W. S.
,
1989
b, “
Assessment of shear deformation theories for multilayered composite plates
,”
ASME Applied Mechanics Reviews
, Vol.
41
, pp.
1
18
.
25.
Nosier
A.
,
Kapania
R. K.
, and
Reddy
J. N.
,
1993
, “
Free Vibration Analysis of Laminated Plates Using a Layer-Wise Theory
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
31
, pp.
2335
2346
.
26.
Pagano
N. J.
,
1969
, “
Exact solutions for Composite Laminates in Cylindrical Bending
,”
Journal of Composite Materials
, Vol.
3
, pp.
398
411
.
27.
Poisson
S. D.
,
1829
, “
Memoire sur l’equilibre et le mouvement des corps elastique
,”
Mem. Acad. Sci.
, Vol.
8
, p.
357
357
.
28.
Reddy
J. N.
, and
Phan
N. D.
,
1985
, “
Stability and Vibration of Isotropic, Orthotropic, and Laminated Plates According to a Higher order Shear Deformation Theory
,”
Journal of Sound and Vibration
, Vol.
98
, pp.
157
170
.
29.
Reddy
J. N.
,
1987
, “
A generalization of Two-Dimensional Theories of Laminated Composite Plates
,”
Communication in Applied Numerical Methods
, Vol.
3
, pp.
173
180
.
30.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, FL.
31.
Reissner
E.
,
1945
, “
The Effects of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
12
, pp.
69
76
.
32.
Reissner
E.
,
1984
, “
On a certain mixed variational theory and a proposed applications
,”
International Journal of Numerical Methods in Engineering
, Vol.
20
, pp.
1366
1368
.
33.
Reissner
E.
,
1985
, “
Reflections on the theory of elastic plates
,”
ASME Applied Mechanics Reviews
, Vol.
38
, pp.
1433
1464
.
34.
Reissner
E.
,
1986
, “
On a mixed variational theorem and on a shear deformable plate theory
,”
International Journal of Numerical Methods in Engineering
, Vol.
23
, pp.
193
198
.
35.
Ren
J. G.
, and
Owen
D. R. J.
,
1989
, “
Vibration and Buckling of Laminated Plates
,”
International Journal of Solids and Structures
, Vol.
23
, pp.
111
131
.
36.
Seide
P.
,
1980
, “
An approximate theory for the bending of laminated plates
,”
Mechanics Today
, Vol.
5
, pp.
451
466
.
37.
Srinivas
S.
,
Joga Rao
C. V.
, and
Rao
A. K.
,
1970
, “
Flexural Vibration of Rectangular Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
23
, pp.
430
436
.
38.
Srinivas
S.
,
1973
, “
A refined analysis of composite laminates
,”
Journal of Sound and Vibration
, Vol.
30
, pp.
495
50
.
39.
Sun
C. T.
, and
Whitney
J. M.
,
1973
, “
On the theories for the dynamic response of laminated plates
,”
American Institute of Aeronautics and Astronautics Journal
, Vol.
11
, pp.
372
398
.
40.
Swift
G. W.
, and
Heller
R. A.
,
1974
, “
Layered beams analysis
,”
ASCE Journal of Engineering Mechanics Division
, Vol.
100
, pp.
267
282
.
41.
Toledano
A.
, and
Murakami
H.
,
1987
a, “
A Higher-Order Laminated Plate Theory with Improved In-Plane Responses
,”
International Journal of Solids and Structures
, Vol.
23
, pp.
111
131
.
42.
Toledano
A.
, and
Murakami
H.
, “
A composite plate theory for arbitrary laminated configurations
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
181
189
.
43.
Valisetty
R. R.
, and
Rehfield
L. W.
,
1988
, “
Application of ply level analysis to flexure wave vibration
,”
Journal of Sound and Vibration
, Vol.
126
, pp.
183
194
.
44.
Vlasov
B. F.
,
1957
, “
Ob uravnieniakh isgiba palstinok (On the equations of bending of plates)
,”
Dokla Ak. Nauk Azerbeijanskoi-SSR
, Vol.
3
, pp.
955
979
.
45.
Yang
P. C.
,
Norris
C. H.
, and
Stavsky
Y.
,
1966
, “
Elastic Wave Propagation in Heterogenous Plates
,”
International Journal of Solids and Structures
, Vol.
2
, pp.
85
97
.
This content is only available via PDF.
You do not currently have access to this content.