The representation of rotation operators in the form of infinite tensor power series, R = exp(Ψˆ), has been found to be a valuable tool in multibody dynamics and nonlinear finite element analysis. This paper presents analogous formulations for the kinematic differential equations of the Euler-vector Ψ and elucidates their connection to Bernoulli-numbers. New power series such as the Bernoulli- and the Gibbs series are shown to provide compact expressions and a simple means for understanding and computing some of the fundamental formulae of rotational kinematics. The paper includes an extensive literature review, discussions of isogonal rotations, and a kinematic singularity measure.

1.
Abramowitz, M., and Stegun, I. A., eds., 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55, U.S. Department of Commerce. National Bureau of Standards, Washington, DC.
2.
Argyris
J.
,
1982
, “
An excursion into large rotations
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
32
, pp.
85
155
.
3.
Bernoulli, J., 1713, Ars conjectandi, opus posthum. Accedit Tractatus de seriebus Infinitis, et epistola Gallice` scripta de Ludo Pilae recticularis, Basel (Reprint: Culture et Civilisation 1968, Bruxelles).
4.
Bortz
J. E.
,
1971
, “
A new Mathematical Formulation for Strapdown Inertial Navigation
,”
IEEE Trans. Aerospace Electronic Systems
, Vol.
AES-7
, No.
1
, pp.
61
66
.
5.
Bromwich, T. J. l’a, 1955, An Introduction to the Theory of Infinite Series, 2nd ed., Macmillan London.
6.
Crowe, M. J., 1994, A History of Vector Calculus, Dover, New York (unabriged and corrected republication of a work originally published in 1967 by Notre Dame Press).
7.
Dilcher, K., et al., 1991, Bernoulli Numbers Bibliography (1713–1990), Queen’s University, Kingston, Ontario, Queen’s Papers in Pure and Applied Mathematics, Vol. 87.
8.
Gibbs, J. W., 1984, Elements of Vector Analysis, New Haven, CT, privately printed, pp. 1–36, 1881; pp. 37–83, 1884 (reprint in The collected Works of J. Willard Gibbs, Vol. 2, Part 2, Longmans, Green and Co., New York, 1928).
9.
Harter
W. G.
, and
Dos Santos
N.
,
1978
, “
Double-group theory on the half-shell and the two-level system. I. Rotation and half-integral spin states
,”
American Journal of Physics
, Vol.
46
, No.
3
, pp.
251
263
.
10.
Ge´radin
M.
, and
Rixen
D.
,
1995
, “
Parametrization of Finite Rotations in Computational Dynamics, A Review
,”
Revue Europe´nne des Ele´ments Finis (Nume´ro spe´cial: Rotations Finies en Me´canique des Solides et des Structures)
, Vol.
4
, No.
5–6
, pp.
497
553
.
11.
Hamel
G.
,
1909
, “
U¨ber die Grundlagen tier Mechanik
,”
Mathematische Annalen
, Vol.
66
, pp.
350
397
.
12.
Hensel
K.
,
1926
, “
U¨ber Potenzreihen von Matrizen
,”
Journal fu¨r die Reine und Angewandte Mathematik
, Vol.
155
, p.
107
110
.
13.
Hill
C. J. D.
,
1857
, “
Na¨r a¨ro de n fo¨rsta termene af Bernoullis serie gifven funktion af den i den sista inga˚ende derivatan?
O¨fersigt af Kongl. Vetenskapsakademiens forhandlingar
, Vol.
14
, pp.
259
261
.
14.
Hiller
M.
, and
Woernle
C.
,
1985
, “
A unified representation of spatial displacements
,”
Mechanism and Machine Theory
, Vol.
19
, No.
6
, pp.
477
486
.
15.
Langner, R., 1997–1998, “Arbeitsumdrucke zur Mechanik der Punkt- und Starrke´rper,” Karlsruhe, Germany: Institut fu¨r Theoretische Mechanik, Universita¨t Karlsruhe (TH), Karlsruhe, Germany, internal publication.
16.
Laning, J. H., Jr., 1949, “The Vector Analysis of Finite Rotations anti Angles,” Massachusetts Institute of Technology, Cambridge, MA, MIT/IL Special Rept. 6398-S-3.
17.
McPhee
J. J.
, and
Dubey
R. N.
,
1991
, “
Dynamics of Multibody Systems with Known Configuration Changes
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, 1991, pp.
215
220
.
18.
Milenkovic, V., 1982, “Coordinates Suitable for Angular Motion Synthesis in Robots,” Robotics International of the Society of Manufacturing Engineers (SME): Proceedings of Robots VI Conference, Detroit, MI, Mar 2–4. pp. 407–420.
19.
Nazaroff
G. J.
,
1979
, “
The Orientation Vector Differential Equation
,”
Journal of Guidance and Control
, Vol.
2
, No.
4
, pp.
351
352
.
20.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, John Wiley and Sons, New York.
21.
Peres
A.
,
1979
, “
Finite Rotations and Angular Velocity
,”
American Journal of Physics
, Vol.
48
, No.
1
, pp.
70
71
.
22.
Pfister, F., 1995, “Contributions a` la Me´canique Analytique des Syste`mes Multicorps,” Ph.D. thesis, Lyon, France: Institute National des Sciences Applique´es (INSA) de Lyon, Lyon, France.
23.
Pfister
F.
,
1996
, “
A three parametric “singularity free” representation of finite spatial rotations
,”
Zeitschrift fu¨r angewandte Mathematik und Mechanik (ZAMM)
, Vol.
76
, No.
S5
, pp.
383
384
.
24.
Rinehart
R. F.
,
1959
, “
The Equation eXey = ex+y in quaternions
,”
Rendiconti del Circolo Matematico di Palermo, Serie II
, Vol.
8
, pp.
160
162
.
25.
Saalschu¨tz, L., 1893, Vorlesungen u¨ber Bernoullische Zahlen, Springer, Berlin.
26.
Santiago
M. A. M.
, and
Vaidya
A. N.
,
1976
, “
Baker-Campbell-Hausdorff formulae and spherical and hyperbolic rotations
,”
The Journal of Astronomical Sciences
, Vol.
44
, No.
1
, pp.
1
19
.
27.
Schaub
H.
,
et
al.
,
1995
, “
Principal Rotation Representation of Proper N × N Orthotogonal Matrices
,”
International Journal of Engineering Science
, Vol.
33
, No.
15
, pp.
2277
2295
.
28.
Schaub
H.
, and
Junkins
J. L.
,
1976
, “
Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters
,”
J. Phys. A: Math. Gen.
, Vol.
9
, No.
6
, pp.
897
904
.
29.
Shuster
M. D.
,
1993
, “
A Survey of Attitude Representations
,”
Journal of the Astronautical Sciences
, Vol.
41
, No.
4
, pp.
439
517
.
30.
Spielrein, J., 1926, Lehrbuch der Vektorrechnung nach den Bedu¨rfnissen in der technischen Mechanik und Elektrizita¨tslehre, 2nd Ed., Verlag yon Konrad Wittwer, Stuttgart.
31.
Spring
K. W.
,
1986
, “
Euler Parameters and the use of quaternion algebra in the manipulation of finite rotations: A review
,”
Mechanism and Machine Theory
, Vol.
21
, No.
5
, pp.
365
373
.
32.
Srinivasa, K. N. R., 1996, Linear Algebra and Group Theory for Physicists, John Wiley and Sons, New York.
33.
Stuelpnagel
J.
,
1964
, “
On the parametrization of the three-dimensional rotation-group
,”
SIAM Review
, Vol.
6
, No.
4
, pp.
422
430
.
34.
Sudarshan, E. C. G., and Mukunda, N., Classical Dynamics: A Modern Perspective, John Wiley and Sons, New York.
35.
Tsiotras
P.
, and
Longuski
J. M.
,
1994
, “
New Kinematic Relations for the large angle problem in rigid body attitude dynamics
,”
Acta Astronautica
, Vol.
32
, No.
3
, pp.
181
190
.
36.
Tsiotras
P.
,
1996
, “
Stabilization and Optimality Results for the Attitude Control Problem
,”
AIAA Journal of Guidance, Control, and Dynamics
, Vol.
19
, No.
4
, pp.
772
779
.
37.
Tsiotras
P.
,
et
al.
,
1997
, “
Higher Order Cayley Transforms with Applications to Attitude Representations
,”
AIAA Journal of Guidance, Control, and Dynamics
, Vol.
20
, No.
3
, pp.
528
534
.
38.
Watson, G. N., 1958, A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London.
39.
Wertz, J. R., ed., 1980, Spacecraft Attitude Determination and Control, D. Reidel, Dordrecht, The Netherlands.
40.
Wiener, T. F., 1962, “Theoretical Analysis of Gimballess Inertial Reference Equipment Using Delta-Modulated Instruments,” dissertation, Department of Aeronautical and Astronautical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
41.
Wilson, E. B., 1901, Vector Analysis, New Haven: Yale University Press, New Haven, CT (reprint: Dover, New York, 1960).
42.
Whittaker, E. T., and Watson, G. N., 1958, A Coarse of Modern Analysis 4th Ed., Cambridge University Press, Cambridge, UK.
This content is only available via PDF.
You do not currently have access to this content.