Cell suspension culture methods based on the generation of microgravity environment are widely used in regenerative medicine for (1) the production of native-like three-dimensional (3D) cell aggregates and engineered tissues [1,2,3], for (2) low cost scalable cell expansion and long-term cell viability maintenance [4,5], and for (3) guiding differentiation of stem cells (SCs) [6]. The generation of a microgravity environment for 3D cell cultures, mimicking the native environment, promotes spatial freedom, cell growth, cell-cell interaction and improves mass transfer and cell exposure to nutrients. Nowadays, microgravity cell cultures are obtained by using stirred or rotating bioreactors, but both devices suffer from limitations: stirring bioreactors generate non-physiological shear stresses, which could damage cultured cells, interfere with SC pluripotency, and limit reproducibility of the culture process; rotating bioreactors are expensive devices due to the complex technological solutions adopted for obtaining rotation [5].

This content is only available via PDF.
You do not currently have access to this content.