As part of the development of American Society of Mechanical Engineers Code Case N-809 [1], a series of sample calculations were performed to gain experience in using the Code Case methods and to determine the impact on a typical application. Specifically, the application of N-809 in a fatigue crack growth analysis was evaluated for a large diameter austenitic pipe in a pressurized water reactor coolant system main loop using the current analytical evaluation procedures in Appendix C of Section XI of the ASME Code [2]. The same example problem was previously used to evaluate the reference fatigue crack growth curves during the development of N-809, as well as to compare N-809 methods to similar methods adopted by the Japan Society of Mechanical Engineers.

The previous example problem used to evaluate N-809 during its development was embellished and has been used to evaluate additional proposed ASME Code changes. For example, the Electric Power Research Institute investigated possible improvements to ASME Code, Section XI, Nonmandatory Appendix L [3], and the previous N-809 example problem formed the basis for flaw tolerance calculations to evaluate those proposed improvements [4]. In addition, the ASME Code Section XI, Working Group on Flaw Evaluation Reference Curves continues to evaluate additional research data and related improvements to N-809 and other fatigue crack growth rate methods.

As a part of these Code investigations, EPRI performed calculations for the Appendix L flaw tolerance sample problem using three international codes and standards to evaluate fatigue crack growth (da/dN) curves for PWR environments: (1) ASME Code Case N-809, (2) JSME Code methods [5], and (3) the French RSE-M method [6]. The results of these comparative calculations are presented and discussed in this paper.

This content is only available via PDF.
You do not currently have access to this content.