Adhesively-bonded resin composites have the advantage of conserving sound tooth structure with the potential for tooth reinforcement, while at the same time providing an aesthetically acceptable restoration. However, no composite material has been able to meet both the functional needs of posterior restorations and the superior aesthetics required for anterior restoration. In an attempt to develop a dental resin composite that had the mechanical strength of hybrid composite materials and the superior polish and gloss retention associated with microfilled materials, nanofilled resin composites have been introduced in the market. Although nanofillers are the most popular fillers utilized in current visible light-activated dental resin composites and are claimed to be the solution for the most challenging material limitations as a universal restorative material, the mechanisms by which these fillers influence the resin composite properties are not well explained. In this study, some physical and mechanical properties of a nanofilled resin composite containing 60 vol. % zirconia and silica fillers were evaluated and compared to those of a microhybrid resin composite of the same composition. The nanofilled resin composite was found to have equivalent polymerization shrinkage and depth of cure to the microhybrid material but a slightly lower degree of conversion and density. Regarding mechanical behaviour, although the nanocomposite was found to exhibit significantly higher wear resistance, and equivalent flexural strength, its indentation modulus and nanohardness were slightly lower. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted in order to evaluate the microstructure and to obtain a better understanding of the effect of the nanofillers on the behaviour of the nanocomposite.

This content is only available via PDF.
You do not currently have access to this content.