When developing products, engineering designers often face the problem that their candidate for a technical solution, ranging from a concept to a detailed design, needs to be analyzed by a design analyst before it is approved or rejected and the engineering designer can continue his/her activities within the product development process. If engineering designers have to send every solution candidate to a design analyst, a lot of time and money is lost. To avoid this, some Swedish companies have started to allow their engineering designers to use the analysis capabilities imbedded in modern CAD/CAE software.

In the literature on product development and on computer based design analysis (CBDA) both processes are fairly well described. However, this cannot be said about the interaction between the two processes. This is a growing issue as it represents core knowledge for developing efficient and effective integration concepts, which in turn can be developed into likewise efficient and effective approaches on how to assist the engineering designer to perform parts of the CBDA process on his/her own. Note that when we refer to CBDA here, this is confined to the use of FEM in the development of products, primarily based on working principles originating from the area of Mechanical Engineering.

Since we have been working on a process model for the integration between engineering design and design analysis, this has inspired us to utilize findings from these efforts to propose a conceptual model for a design analysis process driven by the engineering designer to be integrated into the product development process.

The proposed design analysis process model is based on the use of predefined analysis methods or templates. Templates are also utilized for QA (Quality Assurance) and monitoring of the analysis activities. Responsible for the development of the analysis methods and the templates are expert design analysts, who develop these tools within a technology development process. Before allowing the engineering designers access to them, these tools need to be approved by relevant bodies within the industrial enterprise and/or by external sources such as those responsible for certification and risk management.

In this paper we present the development of the proposed integrated design analysis process model and an industrial case study, which incorporates a non-linear design analysis activity, utilizing the FEM-program Abaqus within the CAD-software Catia V5 and its imbedded optimization module.

This content is only available via PDF.
You do not currently have access to this content.