We consider a four dimensional Hamiltonian system representing the reduced-order (two-mode) dynamics of a buckled beam. The system has a saddle-center equilibrium point, and we pay attention to the existence and detection of the stable-unstable nonlinear manifold and of homoclinic solutions, which are the sources of complex and chaotic dynamics observed in the system response. The system has also a coupling nonlinear parameter, which depends on the boundary conditions, and is zero, e.g., for the hinged-hinged beam and different from zero, e.g., for the fixed-fixed beam. The invariant manifold in the latter case is detected assuming that it can be represented as a graph over the plane spanned by the unstable (principal) variable and its velocity. We show by a series solution that the manifold exists but has a limited extension, not sufficient for the deployment of the homoclinic orbit. Thus, the homoclinic orbit is addressed directly, irrespective of its belonging to the invariant manifold. By means of the perturbation method it is shown that it exists only on some curves of the governing parameters space, which branch from a fundamental path. This shows that the homoclinic orbit is not generic. These results have been confirmed by numerical simulations and by a different analytical technique.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4872-2
PROCEEDINGS PAPER
Detecting Stable-Unstable Nonlinear Invariant Manifold and Homoclinic Orbits in Mechanical Systems
Stefano Lenci,
Stefano Lenci
Polytechnic University of Marche, Ancona, Italy
Search for other works by this author on:
Giuseppe Rega
Giuseppe Rega
University of Rome “La Sapienza”, Rome, Italy
Search for other works by this author on:
Stefano Lenci
Polytechnic University of Marche, Ancona, Italy
Giuseppe Rega
University of Rome “La Sapienza”, Rome, Italy
Paper No:
IMECE2008-66960, pp. 655-664; 10 pages
Published Online:
August 26, 2009
Citation
Lenci, S, & Rega, G. "Detecting Stable-Unstable Nonlinear Invariant Manifold and Homoclinic Orbits in Mechanical Systems." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 11: Mechanical Systems and Control. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 655-664. ASME. https://doi.org/10.1115/IMECE2008-66960
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
On Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
J. Comput. Nonlinear Dynam (April,2013)
Chaotic Dynamics of a Quasi-Periodically Forced Beam
J. Appl. Mech (March,1992)
Existence and Stability of Localized Oscillations in 1-Dimensional Lattices With Soft-Spring and Hard-Spring Potentials
J. Vib. Acoust (October,2004)
Related Chapters
Manifolds and Headers
Heat Exchanger Engineering Techniques
Real Time Human Detection using Covariance Matrices as Human Descriptor
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
Weighted Manifold Multi-Plane Twin Least Squares Classification
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)