In order to study the effects of ambient temperature and relative humidity on the performance of the Siemens V94.2 gas turbine, installed as a topper in an IGCC complex and fed with syngas, a mathematical model of the engine has been developed and implemented into GateCycle environment. The model was fine tuned using experimental data of plant. Thermodynamic analysis of the gas turbine performance, depending on ambient temperature and relative humidity, has been carried out. Results show the strong dependence of engine performance on ambient temperature (in the range from 30 °C to 40 °C). Theoretical and experimental results have been shown that ambient air humidity decreases power losses due to high external temperature. In order to optimize power production in this temperature range, an artificial humidifier was implemented into the model. Furthermore, “Fogging for Evaporative Cooling” technique effects on performance of the gas turbine have been studied. Using GateCycle model, simulations have been carried out as regards to temperature variation in the range which power losses occur. Two control strategies of the artificial air humidifier have been implemented: the first is characterized by an air humidity constant at the intake of the compressor (set to 95%); the second one is characterized by an air temperature constant at the intake of the compressor (set to the temperature corresponding to maximum IGV opening). For both control strategies, power losses recovery can be achieved depending on base air humidity and temperature. Applying the second control strategy, lower water consumption was achieved but a compression ratio very close to the limit value was observed.
Skip Nav Destination
2002 International Joint Power Generation Conference
June 24–26, 2002
Scottsdale, Arizona, USA
Conference Sponsors:
- Power Division
ISBN:
0-7918-3617-7
PROCEEDINGS PAPER
Fogging for Evaporative Cooling Effects on Siemens V94.2 Gas Turbine Performance
S. Brusca,
S. Brusca
University of Catania, Catania, Italy
Search for other works by this author on:
R. Lanzafame
R. Lanzafame
University of Catania, Catania, Italy
Search for other works by this author on:
S. Brusca
University of Catania, Catania, Italy
R. Lanzafame
University of Catania, Catania, Italy
Paper No:
IJPGC2002-26189, pp. 627-634; 8 pages
Published Online:
February 24, 2009
Citation
Brusca, S, & Lanzafame, R. "Fogging for Evaporative Cooling Effects on Siemens V94.2 Gas Turbine Performance." Proceedings of the 2002 International Joint Power Generation Conference. 2002 International Joint Power Generation Conference. Scottsdale, Arizona, USA. June 24–26, 2002. pp. 627-634. ASME. https://doi.org/10.1115/IJPGC2002-26189
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Comparative Study of Two Low C O 2 Emission Power Generation System Options With Natural Gas Reforming
J. Eng. Gas Turbines Power (September,2008)
Experimental Investigation of the Humidification Parameters in a Vertically Aligned Triple Pad Multistage Evaporative Cooler
J. Thermal Sci. Eng. Appl (December,2022)
Design and Test of a Semi-Passive Flow Control Device for Inlet Distortion Suppression
J. Turbomach (January,2001)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration