This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.

This content is only available via PDF.
You do not currently have access to this content.