The trend for higher overall pressure ratios means that turbine entry temperatures are continually increasing. Furthermore, the development of lean, low-emission combustion systems reduces the availability of cooling air and is accompanied by new problems at the combustor/turbine interface. For example, the exit temperature traverse differs from that found in traditional rich-burn combustors with increased swirl and a much flatter profile. Effectively cooling the turbine components is becoming increasingly difficult. One solution is to employ cooled cooling air (CCA) where some of the compressor efflux is diverted for additional cooling in a heat exchanger located in the by-pass duct. An example CCA system is presented which includes an off-take within the dump cavity and the addition of radial struts within the pre-diffuser through which the cooled air is returned to the engine core. This paper addresses the impact this CCA system has on the combustion system external aerodynamics. This included the development of a fully annular, isothermal test facility which incorporated a bespoke 1.5 stage axial compressor, engine relevant outlet guide vanes, pre-diffuser and combustor geometry. A datum aerodynamic performance was established for a non-CCA configuration with a clean, un-strutted pre-diffuser. Results for this baseline CCA system demonstrated that inclusion of a bleed in the dump cavity had limited effect on the overall flow field. However, the inclusion of struts within the pre-diffuser caused a reduction in area ratio and a notable increase in system loss. Consequently an alternative pre-diffuser was designed (using CFD) with the aim of increasing the area ratio back to that of the un-strutted datum. A so-called hybrid diffuser was designed in which the CCA bleed was moved to the pre-diffuser outer wall. The bleed was then used to re-energize the boundary layer, preventing flow separation, enabling the area ratio to be increased close to the datum value. The mechanisms of the hybrid diffuser are complex; the geometry of the off-take and its location with respect to the OGV and strut leading edge were seen to be critical. Experimental evaluation of the final design demonstrated the effective operation the hybrid diffuser with the result that the system loss returned to a level close to that of the datum. Only small differences were seen in the overall flow field.
Skip Nav Destination
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
June 15–19, 2015
Montreal, Quebec, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5669-7
PROCEEDINGS PAPER
Impact of a Cooled Cooling Air Installation on the External Aerodynamics of a Gas Turbine Combustion System
A. D. Walker,
A. D. Walker
Loughborough University, Loughborough, Leicestershire, UK
Search for other works by this author on:
L. Guo
L. Guo
Loughborough University, Loughborough, Leicestershire, UK
Search for other works by this author on:
A. D. Walker
Loughborough University, Loughborough, Leicestershire, UK
L. Guo
Loughborough University, Loughborough, Leicestershire, UK
Paper No:
GT2015-43186, V04BT04A009; 12 pages
Published Online:
August 12, 2015
Citation
Walker, AD, & Guo, L. "Impact of a Cooled Cooling Air Installation on the External Aerodynamics of a Gas Turbine Combustion System." Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Montreal, Quebec, Canada. June 15–19, 2015. V04BT04A009. ASME. https://doi.org/10.1115/GT2015-43186
Download citation file:
68
Views
Related Proceedings Papers
Related Articles
Enhanced External Aerodynamic Performance of a Generic Combustor Using An Integrated OGV/Prediffuser Design Technique
J. Eng. Gas Turbines Power (January,2007)
Impact of a Cooled Cooling Air System on the External Aerodynamics of a Gas Turbine Combustion System
J. Eng. Gas Turbines Power (May,2017)
Aspects of Cooled Gas Turbine Modeling for the Semi-Closed O 2 / CO 2 Cycle With CO 2 Capture
J. Eng. Gas Turbines Power (July,2004)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential