A full Eulerian finite difference method has been developed for solving a dynamic interaction problem between Newtonian fluid and hyperelastic material. It facilitates to simulate certain classes of problems, such that an initial and neutral configuration of a multi-component geometry converted from voxel-based data is provided on a fixed Cartesian mesh. A solid volume fraction, which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for incompressible hyperelastic materials. The present Eulerian approach is confirmed to well reproduce the material deformation in the lid-driven flow and the particle-particle interaction in the Couette flow computed by means of the finite element method. It is applied to a Poiseuille flow containing biconcave neo-Hookean particles. The deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles.

This content is only available via PDF.
You do not currently have access to this content.