Borisov, A. V., Mamaev, I. S., and Kilin, A. A., 2002, “The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics,” Regul. Chaotic Dyn., 7(2), pp. 201–219.

[CrossRef]Harris, T. A., 2001, Rolling Bearing Analysis, John Wiley and Sons, New York.

Virgin, L. N., Lyman, T. C., and Davis, R. B., 2010, “Nonlinear Dynamics of a Ball Rolling on a Surface,” Am. J. Phys., 78(3), pp. 250–257.

[CrossRef]Harris, T. A., and Mindel, M. H., 1973, “Rolling Element Bearing Dynamics,” Wear, 23(3), pp. 311–337.

[CrossRef]Virgin, L. N., 2000, Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration, Cambridge University Press, Cambridge.

Thompson, J. M. T., and Stewart, H. B., 2002, Nonlinear Dynamics and Chaos, John Wiley & Sons, New York.

Lyon, R. H., 1975, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, MIT Press, Cambridge, MA.

Payne, L. E., and Sattinger, D. H., 1975, “Saddle Points and Instability of Nonlinear Hyperbolic Equations,” Isr. J. Math., 22(3–4), pp. 273–303.

[CrossRef]Waalkens, H., Burbanks, A., and Wiggins, S., 2005, “Efficient Procedure to Compute the Microcanonical Volume of Initial Conditions That Leads to Escape Trajectories From a Multidimensional Potential Well,” Phys. Rev. Lett., 95(8), p. 084301.

[CrossRef] [PubMed]Ross, S. D., Bozorgmagham, A. E., Naik, S., and Virgin, L. N., 2018, “Experimental Validation of Phase Space Conduits of Transition Between Potential Wells,” Phys. Rev. E, 98(5), p. 052214.

[CrossRef]Xu, Y., Virgin, L. N., and Ross, S. D., 2019, “On Experimentally Locating Saddle-Points on a Potential Energy Surface From Observed Dynamics,” Mech. Syst. Signal Process., 130(Sept.), pp. 152–163.

Wiebe, R., and Virgin, L. N., 2016, “On the Experimental Identification of Unstable Static Equilibria,” Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 472(2190), p. 20160172.

[CrossRef]Fitzpatrick, R., 2012, An Introduction to Celestial Mechanics, Cambridge University Press, Cambridge.

Harvey, Jr., P. S., Wiebe, R., and Gavin, H. P., 2013, “On the Chaotic Response of a Nonlinear Rolling Isolation System,” Phys. D: Nonlinear Phenom., 256(Aug.), pp. 36–42.

[CrossRef]Moon, F. C., 2008, Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers, John Wiley & Sons, New York.

Shaw, S. W., and Haddow, A. G., 1992, “On “Roller-Coaster” Experiments for Nonlinear Oscillators,” Nonlinear Dyn., 3(5), pp. 375–384.

[CrossRef]Thompson, J. M. T., Hutchinson, J. W., and Sieber, J., 2017, “Probing Shells Against Buckling: A Non-Destructive Technique for Laboratory Testing,” Int. J. Bifurcat. Chaos, 27(14), p. 1730048.

[CrossRef]Zeeman, E. C., 1976, “Catastrophe Theory,” Sci. Am., 234(4), pp. 65–83.

[CrossRef]Marsden, J. E., 1978, “Qualitative Methods in Bifurcation Theory,” Bull. Am. Math. Soc., 84(6), pp. 1125–1148.

[CrossRef]Arnold, V. I., 2003, Catastrophe Theory, Springer Science & Business Media, Berlin.

Poston, T., and Stewart, I., 2014, Catastrophe Theory and Its Applications, Dover Publications, New York.

Davis, P. J., and Rabinowitz, P., 2007, Methods of Numerical Integration, 2nd ed., Dover Publications, Inc., Mineola, NY.

Milne, W. E., 2015, Numerical Calculus, Princeton University Press, Princeton, NJ.

Stroud, A. H., 1971, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ.

van Iderstein, T., and Wiebe, R., 2019, “Experimental Path Following of Unstable Static Equilibria for Snap-Through Buckling,” In: Kerschen, G., eds., Nonlinear Dynamics, Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, pp. 17–22.

Virgin, L. N., 2007, Vibration of Axially-Loaded Structures, Cambridge University Press, Cambridge.

Zhong, J., Virgin, L. N., and Ross, S. D., 2018, “A Tube Dynamics Perspective Governing Stability Transitions: An Example Based on Snap-Through Buckling,” Int. J. Mech. Sci., 149(Dec.), pp. 413–428.

[CrossRef]