Research Papers

Adhesion of Partially and Fully Collapsed Nanotubes

[+] Author and Article Information
Ming Li, Hao Li, Fengwei Li

State Key Laboratory of Structural Analysis for
Industrial Equipment,
Dalian University of Technology,
Dalian 116024, China

Zhan Kang

State Key Laboratory of Structural Analysis for
Industrial Equipment,
Dalian University of Technology,
Dalian 116024, China;
International Research Center for Computational
Dalian University of Technology,
Dalian 116024, China

1M. Li and H. Li have contributed equally.

2Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received September 1, 2018; final manuscript received October 24, 2018; published online November 14, 2018. Assoc. Editor: Yashashree Kulkarni.

J. Appl. Mech 86(1), 011013 (Nov 14, 2018) (10 pages) Paper No: JAM-18-1502; doi: 10.1115/1.4041826 History: Received September 01, 2018; Revised October 24, 2018

The competition between the structural rigidity and the van der Waals interactions may lead to collapsing of aligned nanotubes, and the resulting changes of both configurations and properties promise the applications of nanotubes in nano-composites and nano-electronics. In this paper, a finite-deformation model is applied to study the adhesion of parallel multiwall nanotubes with both partial and full collapsing, in which the noncontact adhesion energy is analytically determined. The analytical solutions of both configurations and energies of collapsed nanotubes are consistent with the molecular dynamics (MD) results, demonstrating the effectiveness of the finite-deformation model. To study the critical conditions of generating the partially and fully collapsed multiwall nanotubes, our analytical model gives the predictions for both the geometry- and energy-related critical diameters, which are helpful for the stability analysis and design of nanotube-based nano-devices.

Copyright © 2019 by ASME
Topics: Adhesion , Nanotubes
Your Session has timed out. Please sign back in to continue.


Ajayan, P. M. , Schadler, L. S. , Giannaris, C. , and Rubio, A. , 2000, “ Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness,” Adv. Mater., 12(10), pp. 750–753. [CrossRef]
Han, Y. , Zhang, X. , Yu, X. , Zhao, J. , Li, S. , Liu, F. , Gao, P. , Zhang, Y. , Zhao, T. , and Li, Q. , 2015, “ Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites,” Sci. Rep., 5, p. 11533. [CrossRef] [PubMed]
Thostenson, E. T. , Ren, Z. F. , and Chou, T. W. , 2001, “ Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Compos. Sci. Technol., 61(13), pp. 1899–1912. [CrossRef]
Coleman, J. N. , Khan, U. , Blau, W. J. , and Gun'ko, Y. K. , 2006, “ Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, 44(9), pp. 1624–1652. [CrossRef]
Ruoff, R. S. , Tersoff, J. , Lorents, D. C. , Subramoney, S. , and Chan, B. , 1993, “ Radial Deformation of Carbon Nanotubes by Van Der Waals Forces,” Nature, 364(6437), pp. 514–516. [CrossRef]
Chopra, N. G. , Benedict, L. X. , Crespi, V. H. , Cohen, M. L. , Louie, S. G. , and Zettl, A. , 1995, “ Fully Collapsed Carbon Nanotubes,” Nature, 377(6545), pp. 135–138. [CrossRef]
Lu, W. , and Chou, T.-W. , 2011, “ Analysis of the Entanglements in Carbon Nanotube Fibers Using a Self-Folded Nanotube Model,” J. Mech. Phys. Solids, 59(3), pp. 511–524. [CrossRef]
Plaut, R. H. , Borum, A. D. , and Dillard, D. A. , 2012, “ Analysis of Carbon Nanotubes and Graphene Nanoribbons With Folded Racket Shapes,” ASME J. Eng. Mater. Technol., 134(2), p. 021009. [CrossRef]
Giusca, C. E. , Tison, Y. , and Silva, S. R. P. , 2008, “ Evidence for Metal-Semiconductor Transitions in Twisted and Collapsed Double-Walled Carbon Nanotubes by Scanning Tunneling Microscopy,” Nano Lett., 8(10), pp. 3350–3356. [CrossRef] [PubMed]
Soares, J. S. , Barboza, A. P. M. , Araujo, P. T. , Barbosa Neto, N. M. , Nakabayashi, D. , Shadmi, N. , Yarden, T. S. , Ismach, A. , Geblinger, N. , Joselevich, E. , Vilani, C. , Cancado, L. G. , Novotny, L. , Dresselhaus, G. , Dresselhaus, M. S. , Neves, B. R. A. , Mazzoni, M. S. C. , and Jorio, A. , 2010, “ Modulating the Electronic Properties Along Carbon Nanotubes Via Tube-Substrate Interaction,” Nano Lett., 10(12), pp. 5043–5048. [CrossRef] [PubMed]
Lim, S. C. , Choi, H. K. , Jeong, H. J. , Song, Y. I. , Kim, G. Y. , Jung, K. T. , and Lee, Y. H. , 2006, “ A Strategy for Forming Robust Adhesion With the Substrate in a Carbon-Nanotube Field-Emission Array,” Carbon, 44(13), pp. 2809–2815. [CrossRef]
Liu, Z. , Jiao, L. , Yao, Y. , Xian, X. , and Zhang, J. , 2010, “ Aligned, Ultralong Single-Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic Devices,” Adv. Mater., 22(21), pp. 2285–2310. [CrossRef] [PubMed]
Yao, S. , and Zhu, Y. , 2015, “ Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices,” Adv. Mater., 27(9), pp. 1480–1511. [CrossRef] [PubMed]
Zhang, A. , and Lieber, C. M. , 2016, “ Nano-Bioelectronics,” Chem. Rev., 116(1), pp. 215–257. [CrossRef] [PubMed]
Ge, Q. , Dunn, C. K. , Qi, H. J. , and Dunn, M. L. , 2014, “ Active Origami by 4D Printing,” Smart Mater. Struct., 23(9), p. 094007. [CrossRef]
Zhong Xun, K. , Ee Mei Teoh, J. , Yong, L. , Chee Kai, C. , Shoufeng, Y. , Jia, A. , Kah Fai, L. , and Wai Yee, Y. , 2015, “ 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing,” Virtual Phys. Prototyping, 10(3), pp. 103–122. [CrossRef]
Blees, M. K. , Barnard, A. W. , Rose, P. A. , Roberts, S. P. , McGill, K. L. , Huang, P. Y. , Ruyack, A. R. , Kevek, J. W. , Kobrin, B. , Muller, D. A. , and McEuen, P. L. , 2015, “ Graphene Kirigami,” Nature, 524(7564), pp. 204–207. [CrossRef] [PubMed]
Qi, Z. , Campbell, D. K. , and Park, H. S. , 2014, “ Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami,” Phys. Rev. B, 90(24), p. 245437. [CrossRef]
Rogers, J. , Huang, Y. , Schmidt, O. G. , and Gracias, D. H. , 2016, “ Origami MEMS and NEMS,” Mrs Bull., 41(2), pp. 123–129. [CrossRef]
Cavallo, F. , and Lagally, M. G. , 2015, “ Nano-Origami: Art and Function,” Nano Today, 10(5), pp. 538–541. [CrossRef]
Chang, T. , 2008, “ Dominoes in Carbon Nanotubes,” Phys. Rev. Lett., 101(17), p. 175501. [CrossRef] [PubMed]
Xue, Q. , Xia, D. , Lv, C. , Jing, N. , and Ling, C. , 2011, “ Molecule Delivery by the Domino Effect of Carbon Nanotubes,” J. Phys. Chem. C, 115(42), pp. 20471–20480. [CrossRef]
Dai, C. , Guo, Z. , Zhang, H. , and Chang, T. , 2016, “ A Nanoscale Linear-to-Linear Motion Converter of Graphene,” Nanoscale, 8(30), pp. 14406–14410. [CrossRef] [PubMed]
Tang, T. , Jagota, A. , and Hui, C. Y. , 2005, “ Adhesion Between Single-Walled Carbon Nanotubes,” J. Appl. Phys., 97(7), p. 074304. [CrossRef]
Zhang, C. , Chen, L. , and Chen, S. , 2013, “ Adhesion Between Two Radially Collapsed Single-Walled Carbon Nanotubes,” Acta Mech., 224(11), pp. 2759–2770. [CrossRef]
Yuan, X. , Wang, Y. , and Zhu, B. , 2018, “ Adhesion Between Two Carbon Nanotubes: Insights From Molecular Dynamics Simulations and Continuum Mechanics,” Int. J. Mech. Sci., 138–139, pp. 323–336. [CrossRef]
Zhang, S. L. , Khare, R. , Belytschko, T. , Hsia, K. J. , Mielke, S. L. , and Schatz, G. C. , 2006, “ Transition States and Minimum Energy Pathways for the Collapse of Carbon Nanotubes,” Phys. Rev. B, 73(7), p. 075423. [CrossRef]
Meng, X. , Li, M. , Kang, Z. , Zhang, X. , and Xiao, J. , 2013, “ Mechanics of Self-Folding of Single-Layer Graphene,” J. Phys. D: Appl. Phys., 46(5), p. 055308. [CrossRef]
Torres-Dias, A. C. , Cerqueira, T. F. T. , Cui, W. , Marques, M. A. L. , Botti, S. , Machon, D. , Hartmann, M. A. , Sun, Y. , Dunstan, D. J. , and San-Miguel, A. , 2017, “ From Mesoscale to Nanoscale Mechanics in Single-Wall Carbon Nanotubes,” Carbon, 123, pp. 145–150. [CrossRef]
Meng, X.-H. , Li, M. , Kang, Z. , and Xiao, J.-L. , 2014, “ Folding of Multi-Layer Graphene Sheets Induced by Van Der Waals Interaction,” Acta Mech. Sin., 30(3), pp. 410–417. [CrossRef]
Sarabadani, J. , Naji, A. , Asgari, R. , and Podgornik, R. , 2011, “ Many-Body Effects in the Van Der Waals-Casimir Interaction Between Graphene Layers,” Phys. Rev. B, 84(15), p. 155407 [CrossRef]
Yuan, X. , and Wang, Y. , 2017, “ Adhesion of Single- and Multi-Walled Carbon Nanotubes to Silicon Substrate: Atomistic Simulations and Continuum Analysis,” J. Phys. D-Appl. Phys., 50(39), p. 395303. [CrossRef]
Pantano, A. , Parks, D. M. , and Boyce, M. C. , 2004, “ Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes,” J. Mech. Phys. Solids, 52(4), pp. 789–821. [CrossRef]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Stukowski, A. , 2010, “ Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng., 18(1), p. 015012. [CrossRef]
Stuart, S. J. , Tutein, A. B. , and Harrison, J. A. , 2000, “ A Reactive Potential for Hydrocarbons With Intermolecular Interactions,” J. Chem. Phys., 112(14), pp. 6472–6486. [CrossRef]
Kudin, K. N. , Scuseria, G. E. , and Yakobson, B. I. , 2001, “ C2F, BN, and C Nanoshell Elasticity From ab Initio Computations,” Phys. Rev. B, 64(23), p. 235406. [CrossRef]
Wei, Y. , Wang, B. , Wu, J. , Yang, R. , and Dunn, M. L. , 2013, “ Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene,” Nano Lett., 13(1), pp. 26–30. [CrossRef] [PubMed]
Zhang, D. B. , Akatyeva, E. , and Dumitrica, T. , 2011, “ Bending Ultrathin Graphene at the Margins of Continuum Mechanics,” Phys. Rev. Lett., 106(25), p. 255503. [CrossRef] [PubMed]
Wang, C. Y. , Mylvaganam, K. , and Zhang, L. C. , 2009, “ Wrinkling of Monolayer Graphene: A Study by Molecular Dynamics and Continuum Plate Theory,” Phys. Rev. B, 80(15), p. 155445. [CrossRef]
Zhao, J. , Jiang, J.-W. , Jia, Y. , Guo, W. , and Rabczuk, T. , 2013, “ A Theoretical Analysis of Cohesive Energy Between Carbon Nanotubes, Graphene and Substrates,” Carbon, 57, pp. 108–119. [CrossRef]


Grahic Jump Location
Fig. 1

Atomic structures obtained through the MD simulations of (a) partially and (b) fully collapsed nanotubes, and schematic illustrations of (c) partially and (d) fully collapsed beams. The dash lines in the beams denote the neutral planesand the interwall distance is d.

Grahic Jump Location
Fig. 2

Schematic processes of the MD models to generate the partially and fully collapsed configurations: (a) the initial circular state becomes the partially collapsed state under the van der Waals interactions and (b) the initial partially collapsed state under the external perturbation, and finally becomes full collapsed state

Grahic Jump Location
Fig. 3

The comparisons of analytical solutions and MD results of the profiles for (a) partially collapsed and (b) fully collapsed single-wall (30,30) nanotubes, and (c) partially collapsed and (d) fully collapsed triple-wall (35,35)-(40,40)-(45,45) nanotubes

Grahic Jump Location
Fig. 4

Comparisons of the analytical solutions and MD results of the total energies for (a) single-wall and (b) triple-wall cases considering frozen circular, partially collapsed and fully collapsed sectional configurations

Grahic Jump Location
Fig. 5

Comparisons of analytical solutions, fitting solutions, and numerical solutions of critical diameters for (a) single-wall and (b) triple-wall partially collapsed nanotubes

Grahic Jump Location
Fig. 6

Comparisons of numerical solutions with semi-analytical solutions and fitting solutions for geometry-related critical diameters of (a) single-wall and (b) triple-wall fully collapsed nanotubes, and comparisons for the energy-related critical diameters of (c) single-wall and (d) triple-wall fully collapsed nanotubes

Grahic Jump Location
Fig. 7

Schematic illustrations of adhesion region (shadow region) for (a) partially and (b) fully collapsed nanotubes



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In