0
Research Papers

An Experimental Study on Stretchy and Tough PDMS/Fabric Composites

[+] Author and Article Information
Ruofei Chang, Zhou Chen

Department of Engineering Mechanics,
Soft Matter Research Center, and
Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China

Cunjiang Yu

Department of Mechanical Engineering,
University of Houston,
Houston, TX 77204;
Department of Electrical and
Computer Engineering,
University of Houston,
Houston, TX 77204;
Department of Biomedical Engineering, and
Materials Science and Engineering Program,
University of Houston,
Houston, TX 77204

Jizhou Song

Department of Engineering Mechanics,
Soft Matter Research Center, and
Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China
e-mail: jzsong@zju.edu.cn

1R. Chang and Z. Chen contributed equally to this work.

2Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received September 11, 2018; final manuscript received October 7, 2018; published online November 8, 2018. Editor: Yonggang Huang.

J. Appl. Mech 86(1), 011012 (Nov 08, 2018) (6 pages) Paper No: JAM-18-1524; doi: 10.1115/1.4041679 History: Received September 11, 2018; Revised October 07, 2018

Polydimethylsiloxane (PDMS) has a good elasticity but with a pretty low fracture toughness, which limits its use in practical applications. This paper presents a simple and low-cost approach to manufacture a PDMS/fabric composite through incorporating the commercially available stretchy plain weft-knitted nylon fabric into the PDMS matrix. The fracture toughness of the composite is much higher than that of pure PDMS with an increase up to 700%. The toughening mechanism, which can be attributed to the deformation localization induced fiber stretch and damage propagation in the PDMS matrix, is fully investigated. During cyclic loadings, the composite may exhibit a linear elastic response or a significant hysteresis depending on the stretch level. These results provide physical insights into the deformation mechanism of a soft fabric-reinforced composite and may offer practical routes to realize robust crack-insensitive PDMS.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, D. H. , Ahn, J. H. , Choi, W. M. , Kim, H. S. , Kim, T. H. , Song, J. , Huang, Y. , Liu, Z. J. , Chun, L. , and Rogers, J. A. , 2008, “ Stretchable and Foldable Silicon Integrated Circuits,” Science, 320(5875), pp. 507–511. [CrossRef] [PubMed]
Huang, Y. A. , Ding, Y. , Bian, J. , Su, Y. , Zhou, J. , Duan, Y. , and Yin, Z. , 2017, “ Hyper-Stretchable Self-Powered Sensors Based on Electrohydrodynamically Printed, Self-Similar Piezoelectric Nano/Micro Fibers,” Nano Energy, 40, pp. 432–439. [CrossRef]
Viventi, J. , Kim, D. H. , Vigeland, L. , Frechette, E. S. , Blanco, J. A. , Kim, Y. S. , Avrin, A. E. , Tiruvadi, V. R. , Hwang, S. W. , Vanleer, A. C. , Wulsin, D. F. , Davis, K. , Gelber, C. E. , Palmer, L. , Van der Spiegel, J. , Wu, J. , Xiao, J. , Huang, Y. , Contreras, D. , Rogers, J. A. , and Litt, B. , 2011, “ Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity In Vivo,” Nat. Neurosci., 14(12), pp. 1599–1605. [CrossRef] [PubMed]
Webb, R. C. , Bonifas, A. P. , Behnaz, A. , Zhang, Y. , Yu, K. J. , Cheng, H. , Shi, M. , Bian, Z. , Liu, Z. , Kim, Y. S. , Yeo, W. H. , Park, J. S. , Song, J. , Li, Y. , Huang, Y. , Gorbach, A. M. , and Rogers, J. A. , 2013, “ Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin,” Nat. Mater., 12(10), pp. 938–944. [CrossRef] [PubMed]
Lee, H. , Choi, T. K. , Lee, Y. B. , Cho, H. R. , Ghaffari, R. , Wang, L. , Choi, H. J. , Chung, T. D. , Lu, N. S. , Hyeon, T. , Choi, S. H. , and Kim, D. H. , 2016, “ A Graphene-Based Electrochemical Device With Thermoresponsive Microneedles for Diabetes Monitoring and Therapy,” Nat. Nanotechnol., 11(6), p. 566. [CrossRef] [PubMed]
Gao, W. , Emaminejad, S. , Nyein, H. Y. Y. , Challa, S. , Chen, K. V. , Peck, A. , Fahad, H. M. , Ota, H. , Shiraki, H. , Kiriya, D. , Lien, D. H. , Brooks, G. A. , Davis, R. W. , and Javey, A. , 2016, “ Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis,” Nature, 529(7587), p. 509. [CrossRef] [PubMed]
Li, H. , Xu, Y. , Li, X. , Chen, Y. , Jiang, Y. , Zhang, C. , Lu, B. , Wang, J. , Ma, Y. , Chen, Y. , Huang, Y. , Ding, M. , Su, H. , Song, G. , Luo, Y. , and Feng, X. , 2017, “ Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement,” Adv. Healthcare Mater., 6, p. 1601013. [CrossRef]
Chen, Y. , Lu, S. , Zhang, S. , Li, Y. , Qu, Z. , Chen, Y. , Lu, B. , Wang, X. , and Feng, X. , 2017, “ Skin-like Biosensor System Via Electrochemical Channels for Noninvasive Blood Glucose Monitoring,” Sci. Adv., 3(12), p. e1701629. [CrossRef] [PubMed]
Suo, Z. , 2012, “ Mechanics of Stretchable Electronics and Soft Machines,” MRS Bull., 37(03), pp. 218–225. [CrossRef]
Song, J. , 2015, “ Mechanics of Stretchable Electronics,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 160–170. [CrossRef]
Li, Z. , Wang, Y. , and Xiao, J. , 2015, “ Mechanics of Curvilinear Electronics and Optoelectronics,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 171–189. [CrossRef]
Ma, Q. , and Zhang, Y. H. , 2016, “ Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics,” ASME J. Appl. Mech., 83(11), p. 111008. [CrossRef]
Zhang, Y. H. , Huang, Y. , and Rogers, J. A. , 2015, “ Mechanics of Stretchable Batteries and Supercapacitors,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 190–199. [CrossRef]
Song, J. , Feng, X. , and Huang, Y. , 2016, “ Mechanics and Thermal Management of Stretchable Inorganic Electronics,” Natl. Sci. Rev., 3(1), pp. 128–143. [CrossRef] [PubMed]
Yuan, J. , Pharr, M. , Feng, X. , Rogers, J. A. , and Huang, Y. , 2016, “ Design of Stretchable Electronics against Impact,” ASME J. Appl. Mech., 10(10), p. 101009. [CrossRef]
Huang, C. , Bian, Z. , Fang, C. , Zhou, X. , and Song, J. , 2018, “ Experimental and Theoretical Study on Mechanical Properties of Porous PDMS,” ASME J. Appl. Mech., 85 (4), p. 041009. [CrossRef]
Zhang, M. , Liu, H. , Cao, P. , Chen, B. , Hu, J. , Chen, Y. , Pan, B. , Fan, J. A. , Li, R. , Zhang, L. , and Su, Y. , 2017, “ Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics,” ASME J. Appl. Mech., 84(12), p. 121010.
Kim, D. H. , Song, J. , Choi, W. M. , Kim, H. S. , Kim, R. H. , Liu, Z. , Huang, Y. , Hwang, K. C. , Zhang, Y. , and Rogers, J. A. , 2008, “ Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18675–680. [CrossRef] [PubMed]
Ko, H. C. , Stoykovich, M. P. , Song, J. , Malyarchuk, V. , Choi, W. M. , Yu, C. J. , Geddes, J. B. , Xiao, J. , Wang, S. , Huang, Y. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
King, D. R. , Sun, T. L. , Huang, Y. , Kurokawa, T. , Nanoyama, T. , Crosby, A. J. , and Gong, J. P. , 2015, “ Extremely Tough Composites From Fabric Reinforced Polyampholyte Hydrogels,” Mater. Horizon, 2(6), pp. 584–591. [CrossRef]
Lin, S. , Cao, C. , Wang, Q. , Gonzalez, M. , Dolbow, J. E. , and Zhao, X. , 2014, “ Design of Stiff, Tough and Stretchy Hydrogel Composite Via Nanoscale Hybrid Crosslinking and Macroscale Fiber Reinforcement,” Soft Matter, 10(38), pp. 7519–7527. [CrossRef] [PubMed]
Gao, Y. , Sim, K. , Sun, S. , Chen, Z. , Song, J. , and Yu, C. , 2015, “ Crack-Insensitive Wearable Electronics Enabled Through High-Strength Kevlar Fabrics,” IEEE Trans. Compon., Packaging Manuf. Technol., 5(9), pp. 1230–1236. [CrossRef]
Feng, X. , Ma, Z. , MacArthur, J. V. , Giuffre, C. J. , Bastawros, A. F. , and Hong, W. , 2016, “ A Highly Stretchable Double-Network Composite,” Soft Matter, 12(44), pp. 8999–9006. [CrossRef] [PubMed]
Ma, Q. , Cheng, H. , Jang, K. I. , Luan, H. , Hwang, K. C. , Rogers, J. A. , Huang, Y. , and Zhang, Y. H. , 2016, “ A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures,” J. Mech. Phys. Solids, 90, pp. 179–202. [CrossRef] [PubMed]
Visser, J. , Melchels, F. P. W. , Jeon, J. E. , van Bussel, E. M. , Kimpton, L. S. , Byrne, H. M. , Dhert, W. J. A. , Dalton, P. D. , Hutmacher, D. W. , and Malda, J. , 2015, “ Reinforcement of Hydrogels Using Three-Dimensionally Printed Microfibers,” Nat. Commun., 6, p. 6933. [CrossRef] [PubMed]
Rivlin, R. S. , and Thomas, A. G. , 1997, “ Rupture of Rubber—I: Characteristic Energy for Tearing,” Collected Papers of RS Rivlin, Springer, New York, pp. 2615–2642.

Figures

Grahic Jump Location
Fig. 4

The stress–strain curve of the PDMS/fabric composite along the x direction. The insets A–G are the snapshots of the specimen corresponding to the specific points on the loading curve.

Grahic Jump Location
Fig. 5

(a) The optical image of the deformed PDMS/fabric composite. (b) The SEM image of the cracked zone. (c) The SEM image of the cross section of the cracked PDMS/fabric composite.

Grahic Jump Location
Fig. 3

(a) Optical images of the nylon fabric. (b) Schematic diagram for the deformed nylon fabric along x and y directions. (c) The force-strain curve of the nylon fabric along the x direction. (d) The force-strain curve of the nylon fabric along the y direction.

Grahic Jump Location
Fig. 2

(a) Snapshots of the crack propagation in the precracked PDMS specimen: (b) The stress–strain curves of the pure and precracked PDMS specimens

Grahic Jump Location
Fig. 1

Various stretchable electronics on a PDMS substrate: (a) Images of twisted and bent wavy Si-CMOS circuit [1] (Permission to reprint granted by AAAS, 2008). (b) Optical image of a freely deformed stretchable CMOS inverters [18] (Permission to reprint granted by National Academy of Sciences of the USA, 2008). (c) Electronic eye camera with silicon photodiode array on a PDMS substrate [19] (Permission to reprint granted by Nature Publishing Group, 2008).

Grahic Jump Location
Fig. 6

The stress–strain curve of the precracked PDMS/fabric composite along the x direction. The insets A–F are the snapshots of the specimen corresponding to the specific points on the loading curve.

Grahic Jump Location
Fig. 7

(a) The stress–strain curve of the PDMS/fabric composite along the x direction and (b) The stress–strain curve of the PDMS/fabric composite along the y direction

Grahic Jump Location
Fig. 8

(a) The Young's modulus and (b) fracture toughness of PDMS and its composite

Grahic Jump Location
Fig. 9

Loading and unloading curves of the precracked PDMS/fabric composite along (a) the x and (b) y directions

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In