Polygerinos,
P.
,
Wang,
Z.
,
Galloway,
K.
,
Wood,
R.
, and
Walsh,
C.
, 2015, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation,” Rob. Auton. Syst.,
73, pp. 135–143.

[CrossRef]
Degani,
A.
,
Choset,
H.
,
Zubiate,
B.
,
Ota,
T.
, and
Zenati,
M.
, 2008, “
Highly Articulated Robotic Probe for Minimally Invasive Surgery,” IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, May 15–19, pp. 3273–3276.

Antman,
S.
, 2006, Nonlinear Problems of Elasticity (Applied Mathematical Sciences),
Springer, New York.

Bisshopp,
K.
, and
Drucker,
D.
, 1945, “
Large Deflection of Cantilever Beams,” Q. Appl. Math.,
3(3), pp. 272–275.

[CrossRef]
Frisch-Fay,
R.
, 1962, Flexible Bars,
Butterworths, London.

Navaee,
S.
, and
Elling,
R.
, 1992, “
Equilibrium Configurations of Cantilever Beams Subjected to Inclined End Loads,” ASME J. Appl. Mech.,
59(3), pp. 572–579.

[CrossRef]
Zhang,
A.
, and
Chen,
G.
, 2013, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms,” ASME J. Mech. Rob.,
5(2), p. 021006.

[CrossRef]
Batista,
M.
, 2014, “
Analytical Treatment of Equilibrium Configurations of Cantilever Under Terminal Loads Using Jacobi Elliptical Functions,” Int. J. Solids Struct.,
51(13), pp. 2308–2326.

[CrossRef]
Wang,
C.
, 1981, “
Large Deflections of an Inclined Cantilever With an End Load,” Int. J. Nonlinear Mech.,
16(2), pp. 155–164.

[CrossRef]
Wang,
C.
, and
Kitipornchai,
S.
, 1992, “
Shooting-Optimization Technique for Large Deflection Analysis of Structural Members,” Eng. Struct.,
14(4), pp. 231–240.

[CrossRef]
Wang,
C.
,
Lam,
K.
,
He,
X.
, and
Chucheepsakul,
S.
, 1997, “
Large Deflections of an End Supported Beam Subjected to a Point Load,” Int. J. Nonlinear Mech.,
32(1), pp. 63–72.

[CrossRef]
Shvartsman,
B.
, 2013, “
Analysis of Large Deflections of a Curved Cantilever Subjected to a Tip-Concentrated Follower Force,” Int. J. Nonlinear Mech.,
50, pp. 75–80.

[CrossRef]
Watson,
L.
, and
Wang,
C.
, 1981, “
A Homotopy Method Applied to Elastica Problems,” Int. J. Solids. Struct.,
17(1), pp. 29–37.

[CrossRef]
Zhang,
X.
, and
Yang,
J.
, 2005, “
Inverse Problem of Elastica of a Variable-Arc-Length Beam Subjected to a Concentrated Load,” Acta Mech. Sin.,
21(5), pp. 444–450.

[CrossRef]
Hinze,
M.
,
Pinnau,
R.
,
Ulbrich,
M.
, and
Ulbrich,
S.
, 2008, Optimization With PDE Constraints. Mathematical Modelling: Theory and Applications,
Springer, Dordrecht, The Netherlands.

Haslinger,
J.
, 2003, Introduction to Shape Optimization: Theory, Approximation, and Computation, Vol.
7,
SIAM, Philadelphia, PA.

Shoup,
T.
, and
McLarnan,
C.
, 1971, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms,” J. Eng. Ind.,
93(1), pp. 263–267.

[CrossRef]
Wilson,
J.
, and
Snyder,
J.
, 1988, “
The Elastica With End-Load Flip-Over,” ASME J. Appl. Mech.,
55(4), pp. 845–848.

[CrossRef]
Gravagne,
I. A.
, and
Walker,
I. D.
, 2002, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators,” IEEE Trans. Rob. Autom.,
18(3), pp. 263–273.

[CrossRef] [PubMed]
Li,
C.
, and
Rahn,
C.
, 2002, “
Design of Continuous Backbone, Cable-Driven Robots,” ASME J. Mech. Des.,
124(2), pp. 265–271.

[CrossRef]
Trivedi,
D.
,
Lotfi,
A.
, and
Rahn,
C.
, 2008, “
Geometrically Exact Models for Soft Robotic Manipulators,” IEEE Trans. Rob.,
24(4), pp. 773–780.

[CrossRef]
Rucker,
C.
, and
Webster,
R.
, 2011, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading,” IEEE Trans. Rob.,
27(6), pp. 1033–1044.

[CrossRef]
Camarillo,
D.
,
Milne,
C.
,
Carlson,
C.
,
Zinn,
M.
, and
Salisbury,
K.
, 2008, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators,” IEEE Trans. Rob.,
24(6), pp. 1262–1273.

[CrossRef]
Webster
,
R. J., III.
, and
Jones,
B. A.
, 2010, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review,” Int. J. Rob. Res.,
29(13), pp. 1661–1683.

[CrossRef]
Chirikjian,
G.
, 1994, “
Hyper-Redundant Manipulator Dynamics: A Continuum Approximation,” Adv. Rob.,
9(3), pp. 217–243.

[CrossRef]
Challamel,
N.
,
Kocsis,
A.
, and
Wang,
C.
, 2015, “
Discrete and Non-Local Elastica,” Int. J. Nonlinear Mech.,
77, pp. 128–140.

[CrossRef]
Wang,
C.
, 2015, “
Longest Reach of a Cantilever With a Tip Load,” Eur. J. Phys.,
37(1), p. 012001.

[CrossRef]
Mochiyama,
H.
,
Watari,
M.
, and
Fujimoto,
H.
, 2007, “
A Robotic Catapult Based on the Closed Elastica and Its Application to Robotic Tasks,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, Oct. 29–Nov. 2, pp. 1508–1513.

Patricio,
P.
,
Adda-Bedia,
M.
, and
Ben Amar,
M.
, 1999, “
An Elastica Problem: Instabilities of an Elastic Arch,” Phys. Sect. D,
124(1–3), pp. 285–295.

Plaut,
R.
, and
Virgin,
L.
, 2009, “
Vibration and Snap-Through of Bent Elastica Strips Subjected to End Rotations,” ASME J. Appl. Mech.,
76(4), p. 041011.

[CrossRef]
Armanini,
C.
,
Dal Corso,
F.
,
Misseroni,
D.
, and
Bigoni,
D.
, 2017, “
From the Elastica Compass to the Elastica Catapult: An Essay on the Mechanics of Soft Robot Arm,” Proc. R. Soc. A,
473(2198), p. 20160870.

[CrossRef]
Griner,
G.
, 1984, “
A Parametric Solution to the Elastic Pole-Vaulting Pole Problem,” ASME J. Appl. Mech.,
51(2), pp. 409–414.

[CrossRef]
Zhang,
Y.
,
Wang,
Y.
,
Li,
Z.
,
Huang,
Y.
, and
Li,
D.
, 2007, “
Snap-Through and Pull-in Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading,” J. Microelectromech. Syst.,
16(3), pp. 684–693.

[CrossRef]
Rus,
D.
, and
Tolley,
M. T.
, 2015, “
Design, Fabrication and Control of Soft Robots,” Nature,
521(7553), pp. 467–475.

[CrossRef] [PubMed]
Mosadegh,
B.
,
Polygerinos,
P.
,
Keplinger,
C.
,
Wennstedt,
S.
,
Shepherd,
R.
,
Gupta,
U.
,
Shim,
J.
,
Bertoldi,
K.
,
Walsh,
C.
, and
Whitesides,
G.
, 2014, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly,” Adv. Funct. Mater.,
24(15), pp. 2163–2170.

[CrossRef]
Connolly,
F.
,
Walsh,
C.
, and
Bertoldi,
K.
, 2017, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching,” Proc. Natl. Acad. Sci.,
114(1), pp. 51–56.

[CrossRef]
Yang,
D.
,
Mosadegh,
B.
,
Ainla,
A.
,
Lee,
B.
,
Khashai,
F.
,
Suo,
Z.
,
Bertoldi,
K.
, and
Whitesides,
G.
, 2015, “
Buckling of Elastomeric Beams Enables Actuation of Soft Machines,” Adv. Mater.,
27(41), pp. 6323–6327.

[CrossRef] [PubMed]
Huang,
W.
, 2002, “
On the Selection of Shape Memory Alloys for Actuators,” Mater. Des.,
23(1), pp. 11–19.

[CrossRef]
Bar-Cohen,
Y.
, 2004, “
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges,” SPIE Press Monographs,
SPIE, Bellingham, WA.

Trivedi,
D.
,
Rahn,
C.
,
Kier,
W.
, and
Walker,
I.
, 2008, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research,” Appl. Bionics Biomech.,
5(3), pp. 99–117.

[CrossRef]
Kier,
W.
, and
Smith,
K.
, 1985, “
Tongues, Tentacles and Trunks: The Biomechanics of Movement in Muscular-Hydrostats,” Zool. J. Linnean Soc.,
83(4), pp. 307–324.

[CrossRef]
Hirose,
S.
, 1993, Biologically Inspired Robots: Snake-like Locomotors and Manipulators, Vol.
1093,
Oxford University Press, Oxford, UK.

Cicconofri,
G.
, and
DeSimone,
A.
, 2015, “
A Study of Snake-like Locomotion Through the Analysis of a Flexible Robot Model,” Proc. R. Soc. A,
471(2184), p. 20150054.

[CrossRef]
Hannan,
M.
, and
Walker,
I.
, 2003, “
Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots,” J. Rob. Syst.,
20(2), pp. 45–63.

[CrossRef]
Laschi,
C.
,
Cianchetti,
M.
,
Mazzolai,
B.
,
Margheri,
L.
,
Follador,
M.
, and
Dario,
P.
, 2012, “
Soft Robot Arm Inspired by the Octopus,” Adv. Rob.,
26(7), pp. 709–727.

[CrossRef]
Immega,
G.
, and
Antonelli,
K.
, 1995, “
The KSI Tentacle Manipulator,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, May 21–27, pp. 3149–3154.

Buckingham,
R.
, 2002, “
Snake Arm Robots,” Ind. Rob.,
29(3), pp. 242–245.

[CrossRef]
Yau,
J.
, 2010, “
Closed-Form Solutions of Large Deflection for a Guyed Cantilever Column Pulled by an Inclination Cable,” J. Mar. Sci. Technol.,
18(1), pp. 130–136.

Batista,
M.
, 2015, “
Large Deflection of Cantilever Rod Pulled by Cable,” Appl. Math. Model.,
39(10–11), pp. 3175–3182.

[CrossRef]
Brander,
D.
,
Gravesen,
J.
, and
Nørbjerg,
T.
, 2017, “
Approximation by Planar Elastic Curves,” Adv. Comput. Math.,
43(1), pp. 25–43.

[CrossRef]
Søndergaard,
A.
,
Feringa,
J.
,
Nørbjerg,
T.
,
Steenstrup,
K.
,
Brander,
D.
,
Graversen,
J.
,
Markvorsen,
S.
,
Bærentzen,
A.
,
Petkov,
K.
,
Hattel,
J.
, Clausen, K., Jensen, K., Knudsen, L., and Kortbek, J., 2016, “
Robotic Hot-Blade Cutting,” Robotic Fabrication in Architecture, Art and Design,
Springer, Cham, Switzerland, pp. 150–164.

Wriggers,
P.
, 2008, Nonlinear Finite Element Methods,
Springer, Berlin.

Rao,
N.
, and
Rao,
V.
, 1986, “
On the Large Deflection of Cantilever Beams With End Rotational Load,” Z. Angew. Math. Mech.,
66(10), pp. 507–509.

[CrossRef]
Elishakoff,
I.
, 2005, “
Controversy Associated With the so-Called Follower Forces: Critical Overview,” Appl. Mech. Rev.,
58(2), pp. 117–142.

[CrossRef]
Munson,
T.
,
Sarich,
J.
,
Wild,
S.
,
Benson,
S.
, and
McInnes,
L.
, 2017, “
Tao 3.8 Users Manual,” Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL.

Nocedal,
J.
, and
Wright,
S.
, 2006, Numerical Optimization (Springer Series in Operations Research and Financial Engineering),
Springer, New York.

Simo,
J.
, 1985, “
A Finite Strain Beam Formulation. the Three-Dimensional Dynamic Problem—Part I,” Comput. Methods Appl. Mech. Eng.,
49(1), pp. 55–70.

[CrossRef]
Chen,
J.
, and
Li,
H.
, 2011, “
On an Elastic Rod Inside a Slender Tube Under End Twisting Moment,” ASME J. Appl. Mech,
78(4), p. 041009.

[CrossRef]
Mahvash,
M.
, and
Dupont,
P.
, 2011, “
Stiffness Control of Surgical Continuum Manipulators,” IEEE Trans. Rob.,
27(2), pp. 334–345.

[CrossRef]
Okubo,
S.
, and
Tortorelli,
D.
, 2004, “
Control of Nonlinear, Continuous, Dynamic Systems Via Finite Elements, Sensitivity Analysis, and Optimization,” Struct. Multidiscip. Optim.,
26(3–4), pp. 183–199.

[CrossRef]