0
Research Papers

Tunable Adhesion of a Bio-Inspired Micropillar Arrayed Surface Actuated by a Magnetic Field

[+] Author and Article Information
Xingji Li

LNM, Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China;
School of Engineering Science,
University of Chinese Academy of Sciences,
Beijing 100049, China

Zhilong Peng, Yazheng Yang

Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081, China;
Beijing Key Laboratory of Lightweight
Multi-Functional Composite Materials
and Structures,
Beijing Institute of Technology,
Beijing 100081, China

Shaohua Chen

Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081, China;
Beijing Key Laboratory of Lightweight
Multi-Functional Composite Materials
and Structures,
Beijing Institute of Technology,
Beijing 100081, China
e-mails: chenshaohua72@hotmail.com; shchen@bit.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received July 18, 2018; final manuscript received September 18, 2018; published online October 18, 2018. Editor: Yonggang Huang.

J. Appl. Mech 86(1), 011007 (Oct 18, 2018) (11 pages) Paper No: JAM-18-1420; doi: 10.1115/1.4041550 History: Received July 18, 2018; Revised September 18, 2018

Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gorb, S. , and Scherge, M. , 2000, “ Biological Microtribology: Anisotropy in Frictional Forces of Orthopteran Attachment Pads Reflects the Ultrastructure of a Highly Deformable Material,” Proc. R. Soc. B, 267(1449), pp. 1239–1244. [CrossRef]
Federle, W. , Brainerd, E. L. , McMahon, T. A. , and Holldobler, B. , 2001, “ Biomechanics of the Movable Pretarsal Adhesive Organ in Ants and Bees,” Proc. Natl. Acad. Sci. U. S. A., 98(11), pp. 6215–6220. [CrossRef] [PubMed]
Federle, W. , Baumgartner, W. , and Holldobler, B. , 2004, “ Biomechanics of Ant Adhesive Pads: Frictional Forces are Rate- and Temperature-Dependent,” J. Exp. Biol., 207(Pt. 1), pp. 67–74. [CrossRef] [PubMed]
Arzt, E. , Gorb, S. , and Spolenak, R. , 2003, “ From Micro to Nano Contacts in Biological Attachment Devices,” Proc. Natl. Acad. Sci. U. S. A., 100(19), pp. 10603–10606. [CrossRef] [PubMed]
Autumn, K. , and Gravish, N. , 2008, “ Gecko Adhesion: Evolutionary Nanotechnology,” Philos. Trans. R. Soc. A, 366(1870), pp. 1575–1590. [CrossRef]
Autumn, K. , Liang, Y. A. , Hsieh, S. T. , Zesch, W. , Chan, W. P. , Kenny, T. W. , Fearing, R. , and Full, R. J. , 2000, “ Adhesive Force of a Single Gecko Foot-Hair,” Nature, 405(6787), pp. 681–685. [CrossRef] [PubMed]
Autumn, K. , Sitti, M. , Liang, Y. A. , Peattie, A. M. , Hansen, W. R. , Sponberg, S. , Kenny, T. W. , Fearing, R. , Israelachvili, J. N. , and Full, R. J. , 2002, “ Evidence for Van Der Waals Adhesion in Gecko Setae,” Proc. Natl. Acad. Sci. U. S. A., 99(19), pp. 12252–12256. [CrossRef] [PubMed]
Huber, G. , Mantz, H. , Spolenak, R. , Mecke, K. , Jacobs, K. , Gorb, S. N. , and Arzt, E. , 2005, “ Evidence for Capillarity Contributions to Gecko Adhesion From Single Spatula Nanomechanical Measurements,” Proc. Natl. Acad. Sci. U. S. A., 102(45), pp. 16293–16296. [CrossRef] [PubMed]
Sun, W. X. , Neuzil, P. , Kustandi, T. S. , Oh, S. , and Samper, V. D. , 2005, “ The Nature of the Gecko Lizard Adhesive Force,” Biophys. J., 89(2), pp. L14–L17. [CrossRef] [PubMed]
Izadi, H. , Stewart, K. M. , and Penlidis, A. , 2014, “ Role of Contact Electrification and Electrostatic Interactions in Gecko Adhesion,” J. R. Soc. Interface, 11(98), p. 20140371. [CrossRef] [PubMed]
Chen, S. H. , and Gao, H. J. , 2007, “ Bio-Inspired Mechanics of Reversible Adhesion: Orientation-Dependent Adhesion Strength for Non-Slipping Adhesive Contact With Transversely Isotropic Elastic Materials,” J. Mech. Phys. Solids, 55(5), pp. 1001–1015. [CrossRef]
Chen, S. H. , Yan, C. , Zhang, P. , and Gao, H. J. , 2009, “ Mechanics of Adhesive Contact on a Power-Law Graded Elastic Half-Space,” J. Mech. Phys. Solids, 57(9), pp. 1437–1448. [CrossRef]
Gao, H. J. , Wang, X. , Yao, H. M. , Gorb, S. , and Arzt, E. , 2005, “ Mechanics of Hierarchical Adhesion Structures of Geckos,” Mech. Mater, 37(2–3), pp. 275–285. [CrossRef]
Chen, B. , Wu, P. D. , and Gao, H. J. , 2008, “ Hierarchical Modelling of Attachment and Detachment Mechanisms of Gecko Toe Adhesion,” Proc. R. Soc. A, 464(2094), pp. 1639–1652. [CrossRef]
Peng, Z. L. , and Chen, S. H. , 2012, “ Effect of Pre-Tension on the Peeling Behavior of a Bio-Inspired Nano-Film and a Hierarchical Adhesive Structure,” Appl. Phys. Lett., 101(16), p. 163702. [CrossRef]
Lee, J. H. , Fearing, R. S. , and Komvopoulos, K. , 2008, “ Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays,” Appl. Phys. Lett., 93(19), p. 191910. [CrossRef]
Kendall, K. , 1975, “ Thin-Film Peeling - Elastic Term,” J. Phys. D Appl. Phys., 8(13), pp. 1449–1452. [CrossRef]
Autumn, K. , Dittmore, A. , Santos, D. , Spenko, M. , and Cutkosky, M. , 2006, “ Frictional Adhesion: A New Angle on Gecko Attachment,” J. Exp. Biol., 209(Pt. 18), pp. 3569–3579. [CrossRef] [PubMed]
Tian, Y. , Pesika, N. , Zeng, H. B. , Rosenberg, K. , Zhao, B. X. , McGuiggan, P. , Autumn, K. , and Israelachvili, J. , 2006, “ Adhesion and Friction in Gecko Toe Attachment and Detachment,” Proc. Natl. Acad. Sci. U. S. A., 103(51), pp. 19320–19325. [CrossRef] [PubMed]
Peng, Z. L. , Chen, S. H. , and Soh, A. K. , 2010, “ Peeling Behavior of a Bio-Inspired Nano-Film on a Substrate,” Int. J. Solids Struct., 47(14–15), pp. 1952–1960. [CrossRef]
Chen, B. , Wu, P. D. , and Gao, H. J. , 2009, “ Pre-Tension Generates Strongly Reversible Adhesion of a Spatula Pad on Substrate,” J. R. Soc. Interface, 6(35), pp. 529–537. [CrossRef] [PubMed]
Stark, A. Y. , Klittich, M. R. , Sitti, M. , Niewiarowski, P. H. , and Dhinojwala, A. , 2016, “ The Effect of Temperature and Humidity on Adhesion of a Gecko-Inspired Adhesive: Implications for the Natural System,” Sci. Rep., 6, p. 30936. [CrossRef] [PubMed]
Stark, A. Y. , Badge, I. , Wucinich, N. A. , Sullivan, T. W. , Niewiarowski, P. H. , and Dhinojwala, A. , 2013, “ Surface Wettability Plays a Significant Role in Gecko Adhesion Underwater,” Proc. Natl. Acad. Sci. U. S. A., 110(16), pp. 6340–6345. [CrossRef] [PubMed]
Xu, Q. , Wan, Y. Y. , Hu, T. S. , Liu, T. X. , Tao, D. S. , Niewiarowski, P. H. , Tian, Y. , Liu, Y. , Dai, L. M. , Yang, Y. Q. , and Xia, Z. H. , 2015, “ Robust Self-Cleaning and Micromanipulation Capabilities of Gecko Spatulae and Their Bio-Mimics,” Nat. Commun., 6, p. 8949. [CrossRef] [PubMed]
Micciche, M. , Arzt, E. , and Kroner, E. , 2014, “ Single Macroscopic Pillars as Model System for Bioinspired Adhesives: Influence of Tip Dimension, Aspect Ratio, and Tilt Angle,” ACS Appl. Mater. Interfaces, 6(10), pp. 7076–7083. [CrossRef] [PubMed]
Carbone, G. , and Pierro, E. , 2013, “ A Review of Adhesion Mechanisms of Mushroom-Shaped Microstructured Adhesives,” Meccanica, 48(8), pp. 1819–1833. [CrossRef]
Aksak, B. , Sahin, K. , and Sitti, M. , 2014, “ The Optimal Shape of Elastomer Mushroom-Like Fibers for High and Robust Adhesion,” Beilstein. J. Nanotech., 5, pp. 830–838. https://www.beilstein-journals.org/bjnano/articles/5/74
Varenberg, M. , Murarash, B. , Kligerman, Y. , and Gorb, S. N. , 2011, “ Geometry-Controlled Adhesion: Revisiting the Contact Splitting Hypothesis,” Appl. Phys. A Mater. Sci. Process., 103(4), pp. 933–938. [CrossRef]
Hu, H. , Tian, H. M. , Shao, J. Y. , Wang, Y. , Li, X. M. , Tian, Y. , Ding, Y. C. , and Lu, B. H. , 2017, “ Friction Contribution to Bioinspired Mushroom-Shaped Dry Adhesives,” Adv. Mater. Interfaces, 4(9), p. 1700016. [CrossRef]
Murphy, M. P. , Kim, S. , and Sitti, M. , 2009, “ Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives,” ACS Appl. Mater. Interfaces, 1(4), pp. 849–855. [CrossRef] [PubMed]
Tao, D. S. , Gao, X. , Lu, H. Y. , Liu, Z. Y. , Li, Y. , Tong, H. , Pesika, N. , Meng, Y. G. , and Tian, Y. , 2017, “ Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated With Ultraprecision Diamond Cutting,” Adv. Funct. Mater., 27(22), p. 1606576. [CrossRef]
Wu, X. A. , Christensen, D. L. , Suresh, S. A. , Jiang, H. , Roderick, W. R. , and Cutkosky, M. , 2017, “ Incipient Slip Detection and Recovery for Controllable Gecko-Inspired Adhesion,” IEEE Robot. Autom. Lett., 2(2), pp. 460–467. [CrossRef]
Jiang, H. , Hawkes, E. W. , Fuller, C. , Estrada, M. A. , Suresh, S. A. , Abcouwer, N. , Han, A. K. , Wang, S. , Ploch, C. J. , Parness, A. , and Cutkosky, M. R. , 2017, “ A Robotic Device Using Gecko-Inspired Adhesives Can Grasp and Manipulate Large Objects in Microgravity,” Sci. Rob., 2(7), p. eaan4545. [CrossRef]
Drotlef, D. M. , Blumler, P. , and del Campo, A. , 2014, “ Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet),” Adv. Mater., 26(5), pp. 775–779. [CrossRef] [PubMed]
Gillies, A. G. , Kwak, J. , and Fearing, R. S. , 2013, “ Controllable Particle Adhesion With a Magnetically Actuated Synthetic Gecko Adhesive,” Adv. Funct. Mater., 23(26), pp. 3256–3261. [CrossRef]
Feynman, R. P. , Leighton, R. B. , and Sands, M. L. , 1965, The Feynman Lectures on Physics (The Electromagnetic Field, Vol. 2), Addison-Wesley, Reading, MA.
Peng, Z. L. , and Chen, S. H. , 2015, “ Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate,” Phys. Rev. E, 91(4), p. 042401. [CrossRef]
Tang, T. , Jagota, A. , and Hui, C. Y. , 2005, “ Adhesion Between Single-Walled Carbon Nanotubes,” J. Appl. Phys., 97(7), p. 074304.
Zhang, C. , Chen, L. , and Chen, S. H. , 2013, “ Adhesion Between Two Radially Collapsed Single-Walled Carbon Nanotubes,” Acta Mech., 224(11), pp. 2759–2770. [CrossRef]
Johnson, K. L. , Kendall, K. , and Roberts, A. D. , 1971, “ Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond. A, 324(1558), pp. 301–313. [CrossRef]
Gao, H. J. , and Yao, H. M. , 2004, “ Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures,” Proc. Natl. Acad. Sci. U. S. A., 101(21), pp. 7851–7856. [CrossRef] [PubMed]
Glassmaker, N. J. , Jagota, A. , Hui, C. Y. , and Kim, J. , 2004, “ Design of Biomimetic Fibrillar Interfaces—1: Making Contact,” J. R. Soc. Interface, 1(1), pp. 23–33. [CrossRef] [PubMed]
Glassmaker, N. J. , Jagota, A. , Hui, C. Y. , Noderer, W. L. , and Chaudhury, M. K. , 2007, “ Biologically Inspired Crack Trapping for Enhanced Adhesion,” Proc. Natl. Acad. Sci. U. S. A., 104(26), pp. 10786–10791. [CrossRef] [PubMed]
Hui, C. Y. , Glassmaker, N. J. , Tang, T. , and Jagota, A. , 2004, “ Design of Biomimetic Fibrillar Interfaces—2: Mechanics of Enhanced Adhesion,” J. R. Soc. Interface, 1(1), pp. 35–48. [CrossRef] [PubMed]
Jagota, A. , and Bennison, S. J. , 2002, “ Mechanics of Adhesion Through a Fibrillar Microstructure,” Integr. Comp. Biol., 42(6), pp. 1140–1145. [CrossRef] [PubMed]
Guo, X. , Jin, F. , and Gao, H. J. , 2011, “ Mechanics of Non-Slipping Adhesive Contact on a Power-Law Graded Elastic Half-Space,” Int. J. Solids Struct., 48(18), pp. 2565–2575. [CrossRef]
Jin, F. , Guo, X. , and Gao, H. J. , 2013, “ Adhesive Contact on Power-Law Graded Elastic Solids: The JKR–DMT Transition Using a Double-Hertz Model,” J. Mech. Phys. Solids, 61(12), pp. 2473–2492. [CrossRef]
Jones, J. E. , 1924, “ On the Determination of Molecular Fields—II: From the Equation of State of a Gas,” Proc. R. Soc. London A, 106(738), pp. 463–477. [CrossRef]
Israelachvili, J. N. , 2011, Intermolecular and Surface Forces: Revised Third Edition, Academic Press, London.
Greiner, C. , del Campo, A. , and Arzt, E. , 2007, “ Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload,” Langmuir, 23(7), pp. 3495–3502. [CrossRef] [PubMed]
Yao, H. M. , and Gao, H. J. , 2006, “ Mechanics of Robust and Releasable Adhesion in Biology: Bottom-Up Designed Hierarchical Structures of Gecko,” J. Mech. Phys. Solids, 54(6), pp. 1120–1146. [CrossRef]
Gorb, S. , Varenberg, M. , Peressadko, A. , and Tuma, J. , 2007, “ Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure,” J. R. Soc. Interface, 4(13), pp. 271–275. [CrossRef] [PubMed]
Liang, J. Z. , 2013, “ Reinforcement and Quantitative Description of Inorganic Particulate-Filled Polymer Composites,” Compos. Part B Eng., 51, pp. 224–232. [CrossRef]
Turcsányi, B. , Pukánszky, B. , and Tüdõs, F. , 1988, “ Composition Dependence of Tensile Yield Stress in Filled Polymers,” J. Mater. Sci. Lett., 7(2), pp. 160–162. [CrossRef]
Komvopoulos, K. , and Yan, W. , 1997, “ A Fractal Analysis of Stiction in Microelectromechanical Systems,” ASME J. Tribol., 119(3), pp. 391–400. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematics of the theoretical model. (a) The model of a magnetic particle reinforced PDMS micropillar arrayed surface in which the height and the width of each pillar are H and a, respectively. b denotes the interval of neighboring pillars. The micropillars keep vertical without an applied magnetic field. (b) Under an applied magnetic field B, large bending deformation happens for micropillars. φ is the rotation angle at the pillar's top. (c) The relation of vectors of the remanence BR, the magnetic field B, and the moment M acting on a single particle. Here, θ is the rotation angle of the pillar where the particle locates.

Grahic Jump Location
Fig. 2

Schematics of large deformed cantilever beam model: (a) a rectangular coordinate system (x, y) and a curvilinear coordinate system (s, θ) are attached on the initial and deformed configurations, respectively, and (b) the profiles of a deformed cantilever beam under different magnetic field strength

Grahic Jump Location
Fig. 3

Schematics of the interaction between a micropillar arrayed surface and a substrate. (a) Under an applied magnetic field, the deformed micropillars are approached by a substrate, where D is the separation distance and φ is the rotation angle at the pillar's top, (b) a tilting square shaped micropillar interacts with a substrate, where a is the width of the square cross section, and (c) a tilting circular micropillar interacts with a substrate, where a is the diameter of the circular cross section.

Grahic Jump Location
Fig. 4

Top views of micropillar's distribution patterns. (a)–(c) Triangular, square, and hexagonal distribution patterns for square pillars; (d)–(f) Triangular, square, and hexagonal distribution patterns for circular pillars. The area surrounded by dashed lines denotes one cell of the pattern. The maximal area density in each pattern is given at the bottom of each figure.

Grahic Jump Location
Fig. 5

The relation between the rotation angle of the pillar's top φ and the applied magnetic field strength B¯

Grahic Jump Location
Fig. 6

The dimensionless adhesion force F¯ad between a single tilting pillar and a substrate as a function of the separation distance D/σ under different magnetic field strength, where the cross section area is taken as A¯=0.01 for both square and circular pillars (σ¯=σ/H=3×10−3)

Grahic Jump Location
Fig. 7

The dimensionless maximal adhesion strength F¯strength varying with the applied magnetic field B¯ for both square and circular cross section cases with the cross section area of A¯=0.01, 0.0225, and 0.04, respectively (σ¯=σ/H=3×10−3)

Grahic Jump Location
Fig. 8

The dimensionless maximal adhesion strength P¯strength as a function of the applied magnetic field strength B¯ for micropillar arrays distributed in a square pattern but with different intervals b¯ between neighboring pillars: (a) for the case of square cross section and (b) for the case of circular cross section. In both cases, a¯=a/H=0.1 and σ¯=σ/H=3×10−3.

Grahic Jump Location
Fig. 9

The dimensionless maximal adhesion strength P¯strength as a function of the applied magnetic field strength B¯ for micropillar arrays distributed in a square pattern but with pillars of different widths or diameters a¯: (a) for the case of square cross section and (b) for the case of circular cross section. In both cases, b¯=b/H=0.1 and σ¯=σ/H=3×10−3.

Grahic Jump Location
Fig. 10

The dimensionless maximal adhesion strength P¯strength varying with the applied magnetic field strength B¯ for both square and circular micropillar arrays but with different distribution patterns, where ρ=1 with a¯=b¯=0.1 and σ¯=σ/H=3×10−3

Grahic Jump Location
Fig. 11

The critical ratio ρcr as a function of the applied magnetic field strength B¯, which can divide the plane into two regions

Grahic Jump Location
Fig. 12

The maximal adhesion strength P¯strength varying with the rotation angle of pillar's top φ for a arrayed surface with circular pillars arranged in square pattern in which a¯=b¯=0.1 and σ¯=σ/H=3×10−3

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In