0
Research Papers

Unraveling the Effect of Material Properties and Geometrical Factors on Ballistic Penetration Energy of Nanoscale Thin Films

[+] Author and Article Information
Zhaoxu Meng

Department of Civil and
Environmental Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208

Sinan Keten

Department of Civil and
Environmental Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208;
Department of Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: s-keten@northwestern.edu

1Corresponding author.

Manuscript received July 12, 2018; final manuscript received July 29, 2018; published online September 7, 2018. Assoc. Editor: Yashashree Kulkarni.

J. Appl. Mech 85(12), 121004 (Sep 07, 2018) (11 pages) Paper No: JAM-18-1406; doi: 10.1115/1.4041041 History: Received July 12, 2018; Revised July 29, 2018

It is crucial to investigate the dynamic mechanical behavior of materials at the nanoscale to create nanostructured protective systems that have superior ballistic impact resistance. Inspired from recent experimental advances that enable ballistic materials testing at small scales, here we report a comparative analysis of the dynamic behavior of nanoscale thin films made from multilayer graphene (MLG), polymer, gold, and aluminum under high-speed projectile impact. We employ atomistic and coarse-grained (CG) molecular dynamics (MD) simulations to measure the ballistic limit velocity (V50) and penetration energy (Ep) of these nanoscale films and investigate their distinctive failure mechanisms over a wide range of impact velocities (Vi). For the local penetration failure mechanism observed in polymer and metal films, we find that the intrinsic mechanical properties influence Ep at low Vi, while material density tends to govern Ep at high Vi. MLG films uniquely show a large impact propagation zone (IPZ), which transfers the highly localized impact energy into elastic deformation energy in a much larger area through cone wave propagation. We present theoretical analyses that corroborate that the size of IPZ should depend not only on material properties but also on a geometrical factor, specifically, the ratio between the projectile radius and film thickness. This study clearly illustrates how material properties and geometrical factors relate to the ballistic penetration energy, thereby allowing a quantitative comparison of the nanoscale ballistic response of different materials.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Carter, T. J. , 2005, “Common Failures in Gas Turbine Blades,” Eng. Failure Anal., 12(2), pp. 237–247. [CrossRef]
Grossman, E. , Gouzman, I. , and Verker, R. , 2010, “Debris/Micrometeoroid Impacts and Synergistic Effects on Spacecraft Materials,” MRS Bull., 35(1), pp. 41–47. [CrossRef]
Anagnostopoulos, G. , Pappas, P.-N. , Li, Z. , Kinloch, I. A. , Young, R. J. , Novoselov, K. S. , Lu, C. Y. , Pugno, N. , Parthenios, J. , and Galiotis, C. , 2016, “Mechanical Stability of Flexible Graphene-Based Displays,” ACS Appl. Mater. Interfaces, 8(34), pp. 22605–22614. [CrossRef] [PubMed]
Lu, Y. , Song, J. , Huang, J. Y. , and Lou, J. , 2011, “Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-Nm Gold Nanowires,” Nano Res., 4(12), pp. 1261–1267. [CrossRef]
McDowell, M. T. , Leach, A. M. , and Gall, K. , 2008, “On the Elastic Modulus of Metallic Nanowires,” Nano Lett., 8(11), pp. 3613–3618. [CrossRef] [PubMed]
Diao, J. , Gall, K. , and Dunn, M. L. , 2004, “Yield Strength Asymmetry in Metal Nanowires,” Nano Lett., 4(10), pp. 1863–1867. [CrossRef]
Gall, K. , Diao, J. , and Dunn, M. L. , 2004, “The Strength of Gold Nanowires,” Nano Lett., 4(12), pp. 2431–2436. [CrossRef]
Meng, Z. , Bessa, M. A. , Xia, W. , Kam Liu, W. , and Keten, S. , 2016, “Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations,” Macromolecules, 49(24), pp. 9474–9483. [CrossRef]
Rottler, J. , Barsky, S. , and Robbins, M. O. , 2002, “Cracks and Crazes: On Calculating the Macroscopic Fracture Energy of Glassy Polymers from Molecular Simulations,” Phys. Rev. Lett., 89(14), p. 148304. [CrossRef] [PubMed]
Yang, Z. , Fujii, Y. , Lee, F. K. , Lam, C.-H. , and Tsui, O. K. , 2010, “Glass Transition Dynamics and Surface Layer Mobility in Unentangled Polystyrene Films,” Science, 328(5986), pp. 1676–1679. [CrossRef] [PubMed]
Liu, Y. , Chen, Y.-C. , Hutchens, S. , Lawrence, J. , Emrick, T. , and Crosby, A. J. , 2015, “Directly Measuring the Complete Stress -Strain Response of Ultrathin Polymer Films,” Macromolecules, 48(18), pp. 6534–6540. [CrossRef]
Lee, J.-H. , Chung, J. Y. , and Stafford, C. M. , 2011, “Effect of Confinement on Stiffness and Fracture of Thin Amorphous Polymer Films,” ACS Macro Lett., 1(1), pp. 122–126. [CrossRef]
Xia, W. , Hsu, D. D. , and Keten, S. , 2015, “Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films,” Macromol. Rapid Commun., 36(15), pp. 1422–1427. [CrossRef] [PubMed]
Xia, W. , and Keten, S. , 2015, “Interfacial Stiffening of Polymer Thin Films under Nanoconfinement,” Extreme Mech. Lett., 4, pp. 89–95. [CrossRef]
Xia, W. , Song, J. , Hsu, D. D. , and Keten, S. , 2016, “Understanding the Interfacial Mechanical Response of Nanoscale Polymer Thin Films Via Nanoindentation,” Macromolecules, 49(10), pp. 3810–3817.
Backman, M. E. , and Goldsmith, W. , 1978, “The Mechanics of Penetration of Projectiles into Targets,” Int. J. Eng. Sci., 16(1), pp. 1–99. [CrossRef]
Wen, H. , 2000, “Predicting the Penetration and Perforation of FRP Laminates Struck Normally by Projectiles with Different Nose Shapes,” Compos. Structures, 49(3), pp. 321–329. [CrossRef]
Mohagheghian, I. , McShane, G. , and Stronge, W. , 2016, “Impact Perforation of Polymer-Metal Laminates: Projectile Nose Shape Sensitivity,” Int. J. Solids Structures, 88–89, pp. 337–353. [CrossRef]
Lee, J.-H. , Veysset, D. , Singer, J. P. , Retsch, M. , Saini, G. , Pezeril, T. , Nelson, K. A. , and Thomas, E. L. , 2012, “High Strain Rate Deformation of Layered Nanocomposites,” Nat. Commun., 3, p. 1164. [CrossRef] [PubMed]
Lee, J.-H. , Loya, P. E. , Lou, J. , and Thomas, E. L. , 2014, “ Dynamic Mechanical Behavior of Multilayer Graphene Via Supersonic Projectile Penetration,” Science, 346(6213), pp. 1092–1096. [CrossRef] [PubMed]
Veysset, D. , Hsieh, A. J. , Kooi, S. , Maznev, A. A. , Masser, K. A. , and Nelson, K. A. , 2016, “Dynamics of Supersonic Microparticle Impact on Elastomers Revealed by Real–Time Multi–Frame Imaging,” Sci. Rep., 6(1), p. 025577.
Xie, W. , Tadepalli, S. , Park, S. H. , Kazemi-Moridani, A. , Jiang, Q. , Singamaneni, S. , and Lee, J.-H. , 2018, “Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites,” Nano Lett., 18(2), pp. 987–993.
Wang, Y. , Chen, X. , Young, R. , and Kinloch, I. , 2016, “Finite Element Analysis of Effect of Inter-Yarn Friction on Ballistic Impact Response of Woven Fabrics,” Compos. Struct., 135, pp. 8–16. [CrossRef]
Wang, Y. , Chen, X. , Young, R. , and Kinloch, I. , 2016, “A Numerical and Experimental Analysis of the Influence of Crimp on Ballistic Impact Response of Woven Fabrics,” Compos. Struct., 140, pp. 44–52. [CrossRef]
Xia, K. , Zhan, H. , Hu, D. A. , and Gu, Y. , 2016, “Failure Mechanism of Monolayer Graphene under Hypervelocity Impact of Spherical Projectile,” Sci. Rep., 6(1), p. 033139.
Haque, B. Z. G. , Chowdhury, S. C. , and Gillespie, J. W. , 2016, “Molecular Simulations of Stress Wave Propagation and Perforation of Graphene Sheets under Transverse Impact,” Carbon, 102, pp. 126–140. [CrossRef]
Liu, N. , Pidaparti, R. , and Wang, X. , 2017, “Mechanical Performance of Graphene-Based Artificial Nacres under Impact Loads: A Coarse-Grained Molecular Dynamic Study,” Polymer, 9(12), p. 134. [CrossRef]
Zhang, Y. , Meng, Z. , Qin, X. , and Keten, S. , 2018, “Ballistic Impact Response of Lipid Membranes,” Nanoscale, 10(10), pp. 4761–4770. [CrossRef] [PubMed]
Ruiz, L. , Xia, W. , Meng, Z. , and Keten, S. , 2015, “A Coarse-Grained Model for the Mechanical Behavior of Multi-Layer Graphene,” Carbon, 82, pp. 103–115. [CrossRef]
Meng, Z. , Soler-Crespo, R. A. , Xia, W. , Gao, W. , Ruiz, L. , Espinosa, H. D. , and Keten, S. , 2017, “A Coarse-Grained Model for the Mechanical Behavior of Graphene Oxide,” Carbon, 117, pp. 476–487. [CrossRef]
Qin, X. , Feng, S. , Meng, Z. , and Keten, S. , 2017, “Optimizing the Mechanical Properties of Cellulose Nanopaper through Surface Energy and Critical Length Scale Considerations,” Cellulose, 24(8), pp. 3289–3299. [CrossRef]
Hsu, D. D. , Xia, W. , Arturo, S. G. , and Keten, S. , 2014, “Systematic Method for Thermomechanically Consistent Coarse-Graining: A Universal Model for Methacrylate-Based Polymers,” J. Chem. Theory Comput., 10(6), pp. 2514–2527. [CrossRef] [PubMed]
Hsu, D. D. , Xia, W. , Arturo, S. G. , and Keten, S. , 2015, “Thermomechanically Consistent and Temperature Transferable Coarse-Graining of Atactic Polystyrene,” Macromolecules, 48(9), pp. 3057–3068. [CrossRef]
Meng, Z. , Singh, A. , Qin, X. , and Keten, S. , 2017, “Reduced Ballistic Limit Velocity of Graphene Membranes Due to Cone Wave Reflection,” Extreme Mech. Lett., 15, pp. 70–77. [CrossRef]
Meng, Z. , Han, J. , Qin, X. , Zhang, Y. , Balogun, O. , and Keten, S. , 2018, “Spalling-Like Failure by Cylindrical Projectiles Deteriorates the Ballistic Performance of Multi-Layer Graphene Plates,” Carbon, 126, pp. 611–619. [CrossRef]
Plimpton, S. , 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Humphrey, W. , Dalke, A. , and Schulten, K. , 1996, “VMD: Visual Molecular Dynamics,” J. Mol. Graphics, 14(1), pp. 33–38. [CrossRef]
Wei, X. , Meng, Z. , Ruiz, L. , Xia, W. , Lee, C. , Kysar, J. W. , Hone, J. C. , Keten, S. , and Espinosa, H. D. , 2016, “Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation,” ACS Nano, 10(2), pp. 1820–1828. [CrossRef] [PubMed]
Qin, X. , Xia, W. , Sinko, R. , and Keten, S. , 2015, “Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement,” Nano Lett., 15(10), pp. 6738–6744. [CrossRef] [PubMed]
Xia, W. , Song, J. , Meng, Z. , Shao, C. , and Keten, S. , 2016, “Designing Multi-Layer Graphene-Based Assemblies for Enhanced Toughness in Nacre-Inspired Nanocomposites,” Mol. Syst. Des. Eng., 1(1), pp. 40–47. [CrossRef]
Daw, M. S. , and Baskes, M. I. , 1984, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B, 29(12), p. 6443. [CrossRef]
Foiles, S. , Baskes, M. , and Daw, M. S. , 1986, “Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Phys. Rev. B, 33(12), p. 7983. [CrossRef]
Park, H. S. , and Zimmerman, J. A. , 2005, “Modeling Inelasticity and Failure in Gold Nanowires,” Phys. Rev. B, 72(5), p. 054106. [CrossRef]
Park, H. S. , Gall, K. , and Zimmerman, J. A. , 2006, “Deformation of FCC Nanowires by Twinning and Slip,” J. Mech. Phys. Solids, 54(9), pp. 1862–1881. [CrossRef]
Häkkinen, H. , Mäkinen, S. , and Manninen, M. , 1990, “Edge Dislocations in FCC Metals: Microscopic Calculations of Core Structure and Positron States in Al and Cu,” Phys. Rev. B, 41(18), p. 12441. [CrossRef]
Bernal, J. , 1924, “The Structure of Graphite,” Proc. R. Soc. London. Ser. A, 106(740), pp. 749–773. [CrossRef]
Wells, A. F. , 2012, Structural Inorganic Chemistry, Oxford University Press, Oxford, UK.
National Research Council, 2011, Opportunities in Protection Materials Science and Technology for Future Army Applications, National Academies Press, Washington, DC.
Signetti, S. , Taioli, S. , and Pugno, N. M. , 2017, “2D Material Armors Showing Superior Impact Strength of Few Layers,” ACS Appl. Mater. Interfaces, 9(46), pp. 40820–40830. [CrossRef] [PubMed]
Bizao, R. A. , Machado, L. D. , de Sousa, J. M. , Pugno, N. M. , and Galvao, D. S. , 2018, “Scale Effects on the Ballistic Penetration of Graphene Sheets,” Sci. Rep., 8(1), p. 006750.
Wei, Y. , Wu, J. , Yin, H. , Shi, X. , Yang, R. , and Dresselhaus, M. , 2012, “The Nature of Strength Enhancement and Weakening by Pentagon–Heptagon Defects in Graphene,” Nat. Mater., 11(9), pp. 759–763. [CrossRef] [PubMed]
Li, H. , Zhang, H. , and Cheng, X. , 2017, “The Effect of Temperature, Defect and Strain Rate on the Mechanical Property of Multi-Layer Graphene: Coarse-Grained Molecular Dynamics Study,” Physica E, 85, pp. 97–102. [CrossRef]
Carpinteri, A. , and Pugno, N. , 2002, “One, Two, and Three-Dimensional Universal Laws for Fragmentation Due to Impact and Explosion,” ASME J. Appl. Mech., 69(6), pp. 854–856. [CrossRef]
Sha, J. , Li, Y. , Villegas Salvatierra, R. , Wang, T. , Dong, P. , Ji, Y. , Lee, S.-K. , Zhang, C. , Zhang, J. , and Smith, R. H. , 2017, “Three-Dimensional Printed Graphene Foams,” ACS Nano, 11(7), pp. 6860–6867. [CrossRef] [PubMed]
Shen, Z. , Ye, H. , Zhou, C. , Kroeger, M. , and Li, Y. , 2018, “Size of Graphene Sheets Determines the Structural and Mechanical Properties of 3D Graphene Foams,” Nanotechnol., 29(10), p. 104001.
Wang, C. , Pan, D. , and Chen, S. , 2018, “Energy Dissipative Mechanism of Graphene Foam Materials,” Carbon, 132, pp. 641–650.
Phoenix, S. L. , and Porwal, P. K. , 2003, “A New Membrane Model for the Ballistic Impact Response and V50 Performance of Multi-Ply Fibrous Systems,” Int. J. Solids Struct., 40(24), pp. 6723–6765. [CrossRef]
Porwal, P. K. , and Phoenix, S. L. , 2005, “Modeling System Effects in Ballistic Impact into Multi-Layered Fibrous Materials for Soft Body Armor,” Int. J. Fract., 135(1–4), pp. 217–249. [CrossRef]
Wetzel, E. D. , Balu, R. , and Beaudet, T. D. , 2015, “A Theoretical Consideration of the Ballistic Response of Continuous Graphene Membranes,” J. Mech. Phys. Solids, 82, pp. 23–31. [CrossRef]
Xia, W. , Ruiz, L. , Pugno, N. M. , and Keten, S. , 2016, “Critical Length Scales and Strain Localization Govern the Mechanical Performance of Multi-Layer Graphene Assemblies,” Nanoscale, 8(12), pp. 6456–6462. [CrossRef] [PubMed]
Natarajan, B. , Krishnamurthy, A. , Qin, X. , Emiroglu, C. D. , Forster, A. , Foster, E. J. , Weder, C. , Fox, D. M. , Keten, S. , and Obrzut, J. , 2018, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater., (26), p. 1800032.
Gu, G. X. , Takaffoli, M. , and Buehler, M. J. , 2017, “Hierarchically Enhanced Impact Resistance of Bioinspired Composites,” Adv. Mater., 29(28), p. 1700060.
Huang, W. , Zaheri, A. , Jung, J.-Y. , Espinosa, H. D. , and Mckittrick, J. , 2017, “Hierarchical Structure and Compressive Deformation Mechanisms of Bighorn Sheep (Ovis Canadensis) Horn,” Acta Biomater., 64, pp. 1–14. [CrossRef] [PubMed]
Yang, R. , Zaheri, A. , Gao, W. , Hayashi, C. , and Espinosa, H. D. , 2017, “AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties,” Adv. Funct. Mater., 27(6), p. 1603993.
Rittigstein, P. , Priestley, R. D. , Broadbelt, L. J. , and Torkelson, J. M. , 2007, “Model Polymer Nanocomposites Provide an Understanding of Confinement Effects in Real Nanocomposites,” Nat. Mater., 6(4), p. 278. [CrossRef] [PubMed]
Bažant, Z. P. , and Caner, F. C. , 2013, “Comminution of Solids Caused by Kinetic Energy of High Shear Strain Rate, with Implications for Impact, Shock, and Shale Fracturing,” Proc. Natl. Acad. Sci., 110(48), pp. 19291–19294. [CrossRef]
Bažant, Z. P. , and Caner, F. C. , 2014, “Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy,” J. Mech. Phys. Solids, 64, pp. 223–235. [CrossRef]
Alonso, L. , Navarro, C. , and García-Castillo, S. K. , 2018, “Analytical Models for the Perforation of Thick and Thin Thickness Woven-Laminates Subjected to High-Velocity Impact,” Composites, Part B Eng., 143, pp. 292–300.
Cheeseman, B. A. , and Bogetti, T. A. , 2003, “Ballistic Impact into Fabric and Compliant Composite Laminates,” Compos. Struct., 61(1–2), pp. 161–173. [CrossRef]
Wang, Y. , Chen, X. , Young, R. , Kinloch, I. , and Wells, G. , 2015, “A Numerical Study of Ply Orientation on Ballistic Impact Resistance of Multi-Ply Fabric Panels,” Composites, Part B, 68, pp. 259–265. [CrossRef]
Morye, S. , Hine, P. , Duckett, R. , Carr, D. , and Ward, I. , 2000, “Modelling of the Energy Absorption by Polymer Composites Upon Ballistic Impact,” Compos. Sci. Technol., 60(14), pp. 2631–2642. [CrossRef]
Naik, N. , Shrirao, P. , and Reddy, B. , 2006, “Ballistic Impact Behaviour of Woven Fabric Composites: Formulation,” Int. J. Impact Eng., 32(9), pp. 1521–1552. [CrossRef]
Caner, F. C. , and Bažant, Z. P. , 2014, “Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: II–Microplane Model and Verification,” J. Mech. Phys. Solids, 64, pp. 236–248. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Simulation snapshots upon failure at ballistic limit velocity (V50) for four different films: MLG, PMMA, gold, and aluminum with the same film thickness of 2 nm. The projectiles used are identical with radius of 6 nm. Here, we show the cross section of one half of the film for clarity. The view of angle is from the upper (impact) side. (b) Ballistic penetration energy (Ep) versus impact velocity (Vi) for the four systems. (c) Scaled ballistic penetration energy (Ep*) by the mass of projected film volume versus Vi.

Grahic Jump Location
Fig. 2

Simulation snapshots for the four systems under high Vi impact

Grahic Jump Location
Fig. 3

(a) Dependence of Ep on film densities for metal films. (b) Dependence of Ep on film densities for polymer films. (c) Ep of polymer films with different mechanical properties, which are tuned by changing the depth of the LJ potential wells.

Grahic Jump Location
Fig. 4

(a) Influence of film density on Ep by using monolayer graphene. (b) Influence of film density on Ep by using a 2 nm thick MLG consisting of six layers.

Grahic Jump Location
Fig. 5

Ep versus Vi of monolayer graphene case that shows IPZ (a) and of a PMMA film with h=2nm that shows local penetration (b) with different film spans. The projectile radius is constant as 6 nm.

Grahic Jump Location
Fig. 6

(a) Ep* of the same PMMA film (h=3nm) subjected to impact by projectiles with different R. The inset shows the low Vi regime. (b) Ep* of PMMA films with different h while using the same projectile (R=8nm). (c) Ep* of gold films with varying h impacted by projectiles with the corresponding R by keeping R/h=2.5: h=2nm, R=5nm; h=4nm, R=10nm; h=6nm, R=15nm.

Grahic Jump Location
Fig. 7

(a) Ep* for PMMA films with varying h impacted by projectiles with radii being R=2.5h. (b) h=10nm case at Vi=500m/s, the dominant failure mechanism is local tearing. (c) h=10nm case at Vi=1500m/s, fragments are formed after impact, and the fragments are clusters of chains.

Grahic Jump Location
Fig. 8

Projectile velocity and reaction force profile from simulation data (solid line) and theoretical estimation (dash line) using Eqs. (3) and (4). The simulation settings are h=0.34nm, R=4nm, and Vi=600m/s.

Grahic Jump Location
Fig. 9

(a) Ep* of a monolayer graphene film as a function of Vi and R. (b) Ep* of a tri-layer graphene film as a function of Vi and R. (c) Ep* of mono-, tri-, and five-layer graphene films using the same projectile with R=6nm.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In