Research Papers

An Acoustomechanical Constitutive Model of Gel Considering Cavitation Effect in Exposure to Ultrasound

[+] Author and Article Information
Qinyi Huang, Yihui Pan

School of Aerospace Engineering
and Applied Mechanics,
Tongji University,
Shanghai 200092, China

Zheng Zhong

School of Aerospace Engineering
and Applied Mechanics,
Tongji University,
Shanghai 200092, China;
School of Science,
Harbin Institute of Technology,
Shenzhen 518055, China

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 22, 2018; final manuscript received June 29, 2018; published online July 24, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(11), 111005 (Jul 24, 2018) (6 pages) Paper No: JAM-18-1302; doi: 10.1115/1.4040777 History: Received May 22, 2018; Revised June 29, 2018

In this paper, an acoustomechanical constitutive model is developed to describe the heating effect of a tissue-mimicking gel by cavitation in exposure to high-intensity focused ultrasound (HIFU). An internal variable, representing the evolution of cavitation process, is introduced into the Helmholtz free energy under the framework of thermodynamics that combines the acoustic radiation stress theory and the nonlinear elasticity theory together. Thus, the internal variable is related to the cavitation process and the mechanical energy dissipation of a tissue-mimicking gel from a macroscopic viewpoint. Since the temperature rise of cavitation phenomenon is more remarkable than that of heating waves, the temperature inside the tissue-mimicking gel rises rapidly mainly due to large amounts of cavitation bubbles. This phenomenon can be quantitatively described by the present model, which fits the existing experimental data well.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Hill, C. R. , Bamber, J. C. , and Ter Haar, G. , 2004, Physical Principles of Medical Ultrasonics, Wiley, New York.
Kennedy, J. E. , 2005, “ High-Intensity Focused Ultrasound in the Treatment of Solid Tumours,” Nat. Rev. Cancer, 5(4), pp. 321–327. [CrossRef] [PubMed]
Khokhlova, V. A. , Bailey, M. R. , Reed, J. A. , Cunitz, B. W. , Kaczkowski, P. J. , and Crum, L. A. , 2006, “ Effects of Nonlinear Propagation, Cavitation, and Boiling in Lesion Formation by High Intensity Focused Ultrasound in a Gel Phantom,” J. Acoust. Soc. Am., 119(3), p. 1834. [CrossRef] [PubMed]
Perelomova, A. , 2004, “ Heat Generation by Impulse Ultrasound,” Ultrasonics, 43(2), pp. 95–100. [CrossRef] [PubMed]
Rayleigh, L. , 1902, “ XXXIV. On the Pressure of Vibrations,” London, Edinburgh, Dublin Philos. Mag. J. Sci., 3(15), pp. 338–346. [CrossRef]
Rayleigh, L. , 1905, “ XLII. On the Momentum and Pressure of Gaseous Vibrations, and on the Connexion With the Virial Theorem,” London, Edinburgh, Dublin Philos. Mag. J. Sci., 10(57), pp. 364–374. [CrossRef]
Mishra, P. , Hill, M. , and Glynne-Jones, P. , 2014, “ Deformation of Red Blood Cells Using Acoustic Radiation Forces,” Biomicrofluidics, 8(3), p. 034109. [CrossRef] [PubMed]
Issenmann, B. , Nicolas, A. , Wunenburger, R. , Manneville, S. , and Delville, J.-P. , 2008, “ Deformation of Acoustically Transparent Fluid Interfaces by the Acoustic Radiation Pressure,” EPL (Europhys. Lett.), 83(3), p. 34002. [CrossRef]
Walker, W. F. , 1999, “ Internal Deformation of a Uniform Elastic Solid by Acoustic Radiation Force,” J. Acoust. Soc. Am., 105(4), pp. 2508–2518. [CrossRef] [PubMed]
Coussios, C. C. , Farny, C. H. , Ter Haar, G. T. , and Roy, R. A. , 2007, “ Role of Acoustic Cavitation in the Delivery and Monitoring of Cancer Treatment by High-Intensity Focused Ultrasound (HIFU),” Int. J. Hyperthermia, 23(2), pp. 105–120. [CrossRef] [PubMed]
Weissler, A. , 1950, “ Depolymerization by Ultrasonic Irradiation: The Role of Cavitation,” J. Appl. Phys., 21(2), pp. 171–173. [CrossRef]
Farny, C. H. , Holt, R. G. , and Roy, R. A. , 2010, “ The Correlation Between Bubble-Enhanced HIFU Heating and Cavitation Power,” IEEE Trans. Bio-Med. Eng., 57(1), pp. 175–184. [CrossRef]
Lafon, C. , Zderic, V. , Noble, M. L. , Yuen, J. C. , Kaczkowski, P. J. , Sapozhnikov, O. A. , Chavrier, F. , Crum, L. A. , and Vaezy, S. , 2005, “ Gel Phantom for Use in High-Intensity Focused Ultrasound Dosimetry,” Ultrasound Med. Biol., 31(10), pp. 1383–1389. [CrossRef] [PubMed]
Prokop, A. F. , Vaezy, S. , Noble, M. L. , Kaczkowski, P. J. , Martin, R. W. , and Crum, L. A. , 2003, “ Polyacrylamide Gel as an Acoustic Coupling Medium for Focused Ultrasound Therapy,” Ultrasound Med. Biol., 29(9), pp. 1351–1358. [CrossRef] [PubMed]
Takegami, K. , Kaneko, Y. , Watanabe, T. , Maruyama, T. , Matsumoto, Y. , and Nagawa, H. , 2004, “ Polyacrylamide Gel Containing Egg White as New Model for Irradiation Experiments Using Focused Ultrasound,” Ultrasound Med. Biol., 30(10), pp. 1419–1422. [CrossRef] [PubMed]
Holt, R. G. , and Roy, R. A. , 2001, “ Measurements of Bubble-Enhanced Heating From Focused, MHz-Frequency Ultrasound in a Tissue-Mimicking Material,” Ultrasound Med. Biol., 27(10), pp. 1399–1412. [CrossRef] [PubMed]
Watkin, N. A. , ter Haar, G. R. , and Rivens, I. , 1996, “ The Intensity Dependence of the Site of Maximal Energy Deposition in Focused Ultrasound Surgery,” Ultrasound Med. Biol., 22(4), pp. 483–491. [CrossRef] [PubMed]
Xu, J. , Bigelow, T. A. , Davis, G. , Avendano, A. , Shrotriya, P. , Bergler, K. , and Hu, Z. , 2014, “ Dependence of Ablative Ability of High-Intensity Focused Ultrasound Cavitation-Based Histotripsy on Mechanical Properties of Agar,” J. Acoust. Soc. Am., 136(6), p. 3018. [CrossRef] [PubMed]
Holt, R. G. , Roy, R. A. , Thomas, C. R. , Farny, C. , Wu, T. , Yang, X. , and Edson, P. , 2006, “ Therapeutic Bubbles: Basic Principles of Cavitation in Therapeutic Ultrasound,” AIP Conf. Proc., 829(1), pp. 13–17.
Watanabe, S. , Kaneko, Y. , Takegami, K. , Maruyama, T. , Nagawa, H. , Takagi, S. , and Matsumoto, Y. , 2006, “ Relationship Between Thermal Effect and Bubble Behavior in HIFU,” AIP Conf. Proc., 829(1), pp. 358–362.
Xin, F. X. , and Lu, T. J. , 2016, “ Acoustomechanical Constitutive Theory for Soft Materials,” Acta Mech. Sin., 32(5), pp. 828–840. [CrossRef]
Pennes, H. H. , 1998, “ Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol., 85(1), pp. 5–34. [CrossRef] [PubMed]
Beniston, M. , 2004, “ The 2003 Heat Wave in Europe: A Shape of Things to Come? An Analysis Based on Swiss Climatological Data and Model Simulations,” Geophys. Res. Lett., 31(2), p. L02202.
Kengne, E. , Mellal, I. , Hamouda, M. B. , and Lakhssassi, A. , 2014, “ A Mathematical Model to Solve Bio-Heat Transfer Problems Through a Bio-Heat Transfer Equation With Quadratic Temperature-Dependent Blood Perfusion Under a Constant Spatial Heating on Skin Surface,” J. Biomed. Sci. Eng., 7(09), p. 721. [CrossRef]
Liu, X. Z. , Zhu, Y. , Zhang, F. , and Gong, X. F. , 2013, “ Estimation of Temperature Elevation Generated by Ultrasonic Irradiation in Biological Tissues Using the Thermal Wave Method,” Chin. Phys. B, 22(2), p. 024301. [CrossRef]
Sun, M. K. , Shieh, J. , Chen, C. S. , Chiang, H. , Huang, C. W. , and Chen, W. S. , 2016, “ Effects of an Implant on Temperature Distribution in Tissue During Ultrasound Diathermy,” Ultrason. Sonochem., 32, pp. 44–53. [CrossRef] [PubMed]
Asai, A. , Okano, H. , Yoshizawa, S. , and Umemura, S.-I. , 2013, “ Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles,” Jpn. J. Appl. Phys., 52(7S), p. 07HF02. [CrossRef]
Liu, K. C. , Cheng, P. J. , and Wang, Y. N. , 2011, “ Analysis of Non-Fourier Thermal Behaviour for Multi-Layer Skin Model,” Therm. Sci., 15(Suppl. 1), pp. S61–S67.
Zimberlin, J. A. , Sanabria-DeLong, N. , Tew, G. N. , and Crosby, A. J. , 2007, “ Cavitation Rheology for Soft Materials,” Soft Matter, 3(6), p. 763. [CrossRef]
Hutchens, S. B. , Fakhouri, S. , and Crosby, A. J. , 2016, “ Elastic Cavitation and Fracture Via Injection,” Soft Matter, 12(9), pp. 2557–2566. [CrossRef] [PubMed]
Holzapfel, G. , 2000, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, West Sussex, UK.
Xin, F. X. , and Lu, T. J. , 2016, “ Generalized Method to Analyze Acoustomechanical Stability of Soft Materials,” ASME J. Appl. Mech. Trans., 83(7), p. 071004.
Xin, F. X. , and Lu, T. J. , 2017, “ A Nonlinear Acoustomechanical Field Theory of Polymeric Gels,” Int. J. Solids Struct., 112, pp. 133–142. [CrossRef]
Rajagopal, K. R. , Srinivasa, A. R. , and Wineman, A. S. , 2007, “ On the Shear and Bending of a Degrading Polymer Beam,” Int. J. Plasticity, 23(9), pp. 1618–1636. [CrossRef]
Zhou, Y. , and Gao, X. W. , 2013, “ Variations of Bubble Cavitation and Temperature Elevation During Lesion Formation by High-Intensity Focused Ultrasound,” J. Acoust. Soc. Am., 134(2), pp. 1683–1694. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Decomposition of deformation

Grahic Jump Location
Fig. 2

The temperature rise with time for the first experiment

Grahic Jump Location
Fig. 3

The temperature rise with time for the second experiment



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In