0
Research Papers

Design and Analysis of Magnetic-Assisted Transfer Printing

[+] Author and Article Information
Qinming Yu

Department of Engineering Mechanics,
School of Mechanics, Civil Engineering
and Architecture,
Northwestern Polytechnical University,
Xi'an 710129, China;
State Key Laboratory for Strength and
Vibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: qingminyu@163.com

Furong Chen, Honglei Zhou, Xudong Yu

Department of Engineering Mechanics,
School of Mechanics, Civil Engineering
and Architecture,
Northwestern Polytechnical University,
Xi'an 710129, China

Huanyu Cheng

Department of Engineering
Science and Mechanics,
The Pennsylvania State University,
University Park, PA 16802
e-mail: Huanyu.Cheng@psu.edu

Huaping Wu

Key Laboratory of E&M
(Zhejiang University of Technology),
Ministry of Education and Zhejiang Province,
Hangzhou 310014, China

1Corresponding authors.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 14, 2018; final manuscript received June 15, 2018; published online July 5, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(10), 101009 (Jul 05, 2018) (7 pages) Paper No: JAM-18-1283; doi: 10.1115/1.4040599 History: Received May 14, 2018; Revised June 15, 2018

As a versatile yet simple technique, transfer printing has been widely explored for the heterogeneous integration of materials/structures, particularly important for the application in stretchable and transient electronics. The key steps of transfer printing involve pickup of the materials/structures from a donor and printing of them onto a receiver substrate. The modulation of the interfacial adhesion is critically important to control the adhesion/delamination at different material–structural interfaces. Here, we present a magnetic-assisted transfer printing technique that exploits a unique structural design, where a liquid chamber filled with incompressible liquid is stacked on top of a compressible gas chamber. The top liquid chamber wall uses a magnetic-responsive thin film that can be actuated by the external magnetic field. Due to the incompressible liquid, the actuation of the magnetic-responsive thin film induces the pressure change in the bottom gas chamber that is in contact with the material/structure to be transfer printed, leading to effective modulation of the interfacial adhesion. The decreased (increased) pressure in the bottom gas chamber facilitates the pickup (printing) step. An analytical model is also established to study the displacement profile of the top thin film of the gas chamber and the pressure change in the gas chamber upon magnetic actuation. The analytical model, validated by finite element analysis, provides a comprehensive design guideline for the magnetic-assisted transfer printing.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Xu, L. , Gutbrod, S. R. , Bonifas, A. P. , Su, Y. , Sulkin, M. S. , Lu, N. , Chung, H. J. , Jang, K. I. , Liu, Z. , Ying, M. , Lu, C. , Webb, R. C. , Kim, J. S. , Laughner, J. I. , Cheng, H. , Liu, Y. , Ameen, A. , Jeong, J. W. , Kim, G. T. , Huang, Y. , Efimov, I. R. , and Rogers, J. A. , 2014, “ 3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium,” Nat. Commun., 5(1), p. 3329. [PubMed]
Rogers, J. A. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [PubMed]
Lee, S. , Kang, B. , Keum, H. , Ahmed, N. , Rogers, J. , Ferreira, P. , Kim, S. , and Min, B. , 2016, “ Heterogeneously Assembled Metamaterials and Metadevices Via 3D Modular Transfer Printing,” Sci. Rep., 6(1), p. 27621. [PubMed]
Hwang, S. W. , Park, G. , Cheng, H. , Song, J. K. , Kang, S. K. , Yin, L. , Kim, J. H. , Omenetto, F. G. , Huang, Y. , Lee, K. M. , and Rogers, J. A. , 2014, “ 25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices,” Adv. Mater., 26(13), pp. 1992–2000. [PubMed]
Hwang, S. W. , Tao, H. , Kim, D. H. , Cheng, H. , Song, J. K. , Rill, E. , Brenckle, M. A. , Panilaitis, B. , Won, S. M. , Kim, Y. S. , Song, Y. M. , Yu, K. J. , Ameen, A. , Li, R. , Su, Y. , Yang, M. , Kaplan, D. L. , Zakin, M. R. , Slepian, M. J. , Huang, Y. , Omenetto, F. G. , and Rogers, J. A. , 2012, “ A Physically Transient Form of Silicon Electronics,” Science, 337(6102), pp. 1640–1644. [PubMed]
Hwang, S. W. , Lee, C. H. , Cheng, H. , Jeong, J. W. , Kang, S. K. , Kim, J. H. , Shin, J. , Yang, J. , Liu, Z. , Ameer, G. A. , Huang, Y. , and Rogers, J. A. , 2015, “ Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors,” Nano Lett., 15(5), pp. 2801–2808. [PubMed]
Carlson, A. , Bowen, A. M. , Huang, Y. , Nuzzo, R. G. , and Rogers, J. A. , 2012, “ Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication,” Adv. Mater., 24(39), pp. 5284–5318. [PubMed]
Gao, Y. , and Cheng, H. , 2017, “ Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration,” ASME J. Electron. Packag., 139(2), p. 020801.
Kim, D. H. , Lu, N. , Ma, R. , Kim, Y. S. , Kim, R. H. , Wang, S. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. , Li, M. , Chung, H. J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [PubMed]
Windmiller, J. R. , Bandodkar, A. J. , Valdés-Ramírez, G. , Parkhomovsky, S. , Martinez, A. G. , and Wang, J. , 2012, “ Electrochemical Sensing Based on Printable Temporary Transfer Tattoos,” Chem. Commun., 48(54), pp. 6794–6796.
Song, J. , Kam, F.-Y. , Png, R.-Q. , Seah, W.-L. , Zhuo, J.-M. , Lim, G.-K. , Ho, P. K. , and Chua, L.-L. , 2013, “ A General Method for Transferring Graphene Onto Soft Surfaces,” Nat. Nanotechnol., 8(5), pp. 356–362. [PubMed]
Cui, X. , Lee, G.-H. , Kim, Y. D. , Arefe, G. , Huang, P. Y. , Lee, C.-H. , Chenet, D. A. , Zhang, X. , Wang, L. , and Ye, F. , 2015, “ Multi-Terminal Transport Measurements of MoS2 Using a Van der Waals Heterostructure Device Platform,” Nat. Nanotechnol., 10(6), pp. 534–540. [PubMed]
Ko, H. , Takei, K. , Kapadia, R. , Chuang, S. , Fang, H. , Leu, P. W. , Ganapathi, K. , Plis, E. , Kim, H. S. , and Chen, S.-Y. , 2010, “ Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors,” Nature, 468(7321), pp. 286–289. [PubMed]
Kim, S. J. , Cho, H. R. , Cho, K. W. , Qiao, S. , Rhim, J. S. , Soh, M. , Kim, T. , Choi, M. K. , Choi, C. , and Park, I. , 2015, “ Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy,” ACS Nano, 9(3), pp. 2677–2688. [PubMed]
Xu, S. , Yan, Z. , Jang, K.-I. , Huang, W. , Fu, H. , Kim, J. , Wei, Z. , Flavin, M. , McCracken, J. , Wang, R. , Badea, A. , Liu, Y. , Xiao, D. , Zhou, G. , Lee, J. , Chung, H. U. , Cheng, H. , Ren, W. , Banks, A. , Li, X. , Paik, U. , Nuzzo, R. G. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2015, “ Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling,” Science, 347(6218), pp. 154–159. [PubMed]
Yang, S. , Qiao, S. , and Lu, N. , 2016, “ Elasticity Solutions to Nonbuckling Serpentine Ribbons,” ASME J. Appl. Mech., 84(2), p. 021004.
Meng, X. , Liu, B. , Wang, Y. , Zhang, T. , and Xiao, J. , 2016, “ Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics,” ASME J. Appl. Mech., 83(8), p. 081011.
Feng, X. , Meitl, M. A. , Bowen, A. M. , Huang, Y. , Nuzzo, R. G. , and Rogers, J. A. , 2007, “ Competing Fracture in Kinetically Controlled Transfer Printing,” Langmuir, 23(25), pp. 12555–12560. [PubMed]
Sim, K. , Chen, S. , Li, Y. , Kammoun, M. , Peng, Y. , Xu, M. , Gao, Y. , Song, J. , Zhang, Y. , Ardebili, H. , and Yu, C. , 2015, “ High Fidelity Tape Transfer Printing Based on Chemically Induced Adhesive Strength Modulation,” Sci. Rep., 5(1), p. 16133. [PubMed]
Kim, N. , Kang, H. , Lee, J.-H. , Kee, S. , Lee, S. H. , and Lee, K. , 2015, “ Highly Conductive All-Plastic Electrodes Fabricated Using a Novel Chemically Controlled Transfer-Printing Method,” Adv. Mater., 27(14), pp. 2317–2323. [PubMed]
Meitl, M. A. , Zhu, Z. T. , Kumar, V. , Lee, K. J. , Feng, X. , Huang, Y. Y. , Adesida, I. , Nuzzo, R. G. , and Rogers, J. A. , 2006, “ Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater., 5(1), pp. 33–38.
Feng, X. , Cheng, H. Y. , Bowen, A. M. , Carlson, A. W. , Nuzzo, R. G. , and Rogers, J. A. , 2013, “ A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing,” ASME J. Appl. Mech., 80(6), p. 061023.
Kim, R. H. , Kim, D. H. , Xiao, J. L. , Kim, B. H. , Park, S. I. , Panilaitis, B. , Ghaffari, R. , Yao, J. M. , Li, M. , Liu, Z. J. , Malyarchuk, V. , Kim, D. G. , Le, A. P. , Nuzzo, R. G. , Kaplan, D. L. , Omenetto, F. G. , Huang, Y. G. , Kang, Z. , and Rogers, J. A. , 2010, “ Waterproof AlInGaP Optoelectronics on Stretchable Substrates With Applications in Biomedicine and Robotics,” Nat. Mater., 9(11), pp. 929–937. [PubMed]
Wu, J. , Kim, S. , Chen, W. , Carlson, A. , Hwang, K.-C. , Huang, Y. , and Rogers, J. A. , 2011, “ Mechanics of Reversible Adhesion,” Soft Matter, 7(18), pp. 8657–8662.
Cheng, H. Y. , Wu, J. , Yu, Q. M. , Kim-Lee, H. J. , Carlson, A. , Turner, K. T. , Hwang, K. C. , Huang, Y. G. , and Rogers, J. A. , 2012, “ An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing,” Mech. Res. Commun., 43, pp. 46–49.
Carlson, A. , Kim-Lee, H. J. , Wu, J. , Elvikis, P. , Cheng, H. Y. , Kovalsky, A. , Elgan, S. , Yu, Q. M. , Ferreira, P. M. , Huang, Y. G. , Turner, K. T. , and Rogers, J. A. , 2011, “ Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly,” Appl. Phys. Lett., 98(26), p. 264104.
Carlson, A. , Wang, S. D. , Elvikis, P. , Ferreira, P. M. , Huang, Y. G. , and Rogers, J. A. , 2012, “ Active, Programmable Elastomeric Surfaces With Tunable Adhesion for Deterministic Assembly by Transfer Printing,” Adv. Funct. Mater., 22(21), pp. 4476–4484.
Li, R. , Li, Y. H. , Lu, C. F. , Song, J. Z. , Saeidpouraza, R. , Fang, B. , Zhong, Y. , Ferreira, P. M. , Rogers, J. A. , and Huang, Y. G. , 2012, “ Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis,” Soft Matter, 8(27), pp. 7122–7127.
Gao, Y. , Li, Y. , Li, R. , and Song, J. , 2017, “ An Accurate Thermomechanical Model for Laser-Driven Microtransfer Printing,” ASME J. Appl. Mech., 84(6), p. 064501.
Lee, H. , Um, D. S. , Lee, Y. , Lim, S. , Kim, H. J. , and Ko, H. , 2016, “ Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes,” Adv. Mater., 28(34), pp. 7457–7465. [PubMed]
Xue, Y. G. , Zhang, Y. H. , Feng, X. , Kim, S. , Rogers, J. A. , and Huang, Y. G. , 2015, “ A Theoretical Model of Reversible Adhesion in Shape Memory Surface Relief Structures and Its Application in Transfer Printing,” J. Mech. Phys. Solids, 77, pp. 27–42.
Eisenhaure, J. D. , Xie, T. , Varghese, S. , and Kim, S. , 2013, “ Microstructured Shape Memory Polymer Surfaces With Reversible Dry Adhesion,” ACS Appl. Mater. Interfaces, 5(16), p. 7714. [PubMed]
Baik, S. , Kim, D. W. , Park, Y. , Lee, T.-J. , Bhang, S. H. , and Pang, C. , 2017, “ A Wet-Tolerant Adhesive Patch Inspired by Protuberances in Suction Cups of Octopi,” Nature, 546(7658), pp. 396–400. [PubMed]
Hu, B.-S. , Wang, L.-W. , Fu, Z. , and Zhao, Y.-Z. , 2009, “ Bio-Inspired Miniature Suction Cups Actuated by Shape Memory Alloy,” Int. J. Adv. Rob. Syst., 6(3), pp. 151–160.
Abbott, J. J. , Ergeneman, O. , Kummer, M. P. , Hirt, A. M. , and Nelson, B. J. , 2007, “ Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies,” IEEE Trans. Rob., 23(6), pp. 1247–1252.
Pirmoradi, F. , Jackson, J. , Burt, H. , and Chiao, M. , 2011, “ A Magnetically Controlled MEMS Device for Drug Delivery: Design, Fabrication, and Testing,” Lab Chip, 11(18), pp. 3072–3080. [PubMed]
Huang, L.-B. , Bai, G. , Wong, M.-C. , Yang, Z. , Xu, W. , and Hao, J. , 2016, “ Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy Into Electricity and Light Emissions,” Adv. Mater., 28(14), pp. 2744–2751. [PubMed]
Schomburg, W. K. , 2011, Introduction to Microsystem Design, Springer, Berlin. [PubMed] [PubMed]
Khan, S. , Lorenzelli, L. , and Dahiya, R. , 2016, “ Flexible MISFET Devices From Transfer Printed Si Microwires and Spray Coating,” IEEE J. Electron Devices Soc., 4(4), pp. 189–196.
Fatemeh, P. , Luna, C. , and Mu, C. , 2010, “ A Magnetic Poly(Dimethylesiloxane) Composite Membrane Incorporated With Uniformly Dispersed, Coated Iron Oxide Nanoparticles,” J. Micromech. Microeng., 20(1), p. 015032.
Kevin, M. , Saad, A. , Mary, F. , and Zoubeida, O. , 2014, “ Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami,” Smart Mater. Struct., 23(9), p. 094002.
Jürgen, M. , and Dominik, U. , 2016, “ Experimental and Theoretical Analysis of the Actuation Behavior of Magnetoactive Elastomers,” Smart Mater. Struct., 25(10), p. 104002.
Robert, S. , Juan, R. , Samuel, E. L. , and Paris, R. V. , 2014, “ Numerical Simulation and Experimental Validation of the Large Deformation Bending and Folding Behavior of Magneto-Active Elastomer Composites,” Smart Mater. Struct., 23(9), p. 094004.
Weisong, W. , Zhongmei, Y. , Jackie, C. C. , and Ji, F. , 2004, “ Composite Elastic Magnet Films With Hard Magnetic Feature,” J. Micromech. Microeng., 14(10), p. 1321.
Zhang, E. , Liu, Y. , and Zhang, Y. , 2018, “ A Computational Model of Bio-Inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties,” ASME J. Appl. Mech., 85(5), p. 071002.
Ma, Q. , and Zhang, Y. , 2016, “ Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics,” ASME J. Appl. Mech., 83(11), p. 111008.
Che, K. , Yuan, C. , Wu, J. , Jerry Qi, H. , and Meaud, J. , 2016, “ Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence,” ASME J. Appl. Mech., 84(1), p. 011004.
Li, H. , Ma, Y. , Wen, W. , Wu, W. , Lei, H. , and Fang, D. , 2017, “ In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures,” ASME J. Appl. Mech., 84(8), p. 081006.
Liu, J. , and Zhang, Y. , 2018, “ A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson's Ratios,” ASME J. Appl. Mech., 85(5), p. 051003.

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of the stamp with a structural design that uses an incompressible liquid chamber stacked on top of a gas chamber for magnetic-assisted transfer printing. (a) The 3D representation and cross-sectional views of the design. The stamp is deformed upon the external magnetic actuation in the (b) pickup and (c) printing step.

Grahic Jump Location
Fig. 2

The normalized maximum displacement wbotmax/hc of thebottom PDMS thin film as a function of the normalized electromagnetic driving pressure Δp/pc0 during the pickup step (λ=1, Rbot/hc=1.2). (a) The effect from the thickness (Etop/Ebot=1,νtop/vbot=1, k=0.75, Ebot/pc0=10); (b) the effect from the modulus (νtop/vbot=1, h/hc=0.16, k=0.75); and (c) the effect from the radii ratio (Etop/Ebot=1, νtop/vbot=1, h/hc=0.16, Ebot/pc0=10).

Grahic Jump Location
Fig. 3

The dependence of the volume-induced pressure in thebottom gas chamber on the normalized electromagnetic driving pressure Δp/pc0 for different radii ratios (Ebot/Etop=1, νbot/vtop=1, λ=1, Rbot/hc=1.2, h/hc=0.16, Ebot/pc0=10)

Grahic Jump Location
Fig. 4

The normalized volume-induced pressure change in thebottom gas chamber during (a) pickup step and (b) printingstep for different radii ratios (Etop/Ebot=1, νtop/vbot=1,h/hc=0.16, Rbot/hc=1.2, Ebot/pc0=10)

Grahic Jump Location
Fig. 5

The dependence of the volume-induced pressure in the bottom gas chamber as a function of (a) the normalized magnetization of the magnetic-responsive thin film Mz/M̃z (for ΔH/ΔH̃=1) and (b) the normalized difference in the magnetic field strength ΔH/ΔH̃ (for Mz/M̃z=1) for different radii ratios. (Ebot/Etop=1, νbot/vtop=1, λ=1, Rbot/hc=1.2, h/hc=0.16, Ebot/pc0=10).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In