Research Papers

Extended Greenwood–Williamson Models for Rough Spheres

[+] Author and Article Information
T. Zhao

Zienkiewicz Centre for Computational
Swansea University,
Swansea SA1 8EN, UK

Y. T. Feng

Zienkiewicz Centre for Computational
Swansea University,
Swansea SA1 8EN, UK
e-mail: y.feng@swansea.ac.uk

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received May 13, 2018; final manuscript received June 8, 2018; published online July 3, 2018. Assoc. Editor: Yashashree Kulkarni.

J. Appl. Mech 85(10), 101007 (Jul 03, 2018) (9 pages) Paper No: JAM-18-1280; doi: 10.1115/1.4040537 History: Received May 13, 2018; Revised June 08, 2018

The current work aims to develop two extended Greenwood–Williamson (GW) models for spherical particles with surface roughness which can be incorporated into the discrete element modeling (DEM) framework. The defects of the classic GW model when directly adopted in DEM are fully addressed and illustrated by both theoretical and numerical results. The first model, the extended elastic GW (E-GW) model, which evaluates the elastic deformation of the asperities and the bulk substrate separately is developed to consider the positive overlap involved in the contact problem. The capability of incorporating the extended elastic model into the DEM is illustrated by the comparison between the classic and extended models. The second model, the extended elasto–plastic GW (EP-GW) model, is further developed to consider the plastic deformation of the asperities which reduces the pressure increased by the surface roughness. Numerical comparisons between the E-GW and EP-GW models are also conducted to demonstrate the effect of the plastic deformation on the pressure and deformation distributions in the contact region.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Feng, Y. T. , Zhao, T. , Kato, J. , and Zhou, W. , 2017, “ Towards Stochastic Discrete Element Modelling of Spherical Particles With Surface Roughness: A Normal Interaction Law,” Comput. Methods Appl. Mech. Eng., 315, pp. 247–272. [CrossRef]
Zhao, T. , Feng, Y. T. , and Wang, M. , 2018, “ An Extended Greenwood-Williamson Model Based Normal Interaction Law for Discrete Element Modelling of Spherical Particles With Surface Roughness,” Int. J. Numer. Anal. Methods Geomech. (in press).
Cho, N. A. , Martin, C. D. , and Sego, D. C. , 2007, “ A Clumped Particle Model for Rock,” Int. J. Rock Mech. Min. Sci., 44(7), pp. 997–1010. [CrossRef]
Hryciw, R. D. , Zheng, J. , and Shetler, K. , 2016, “ Particle Roundness and Sphericity From Images of Assemblies by Chart Estimates and Computer Methods,” J. Geotech. Geoenviron. Eng., 142(9), p. 04016038. [CrossRef]
Jensen, R. P. , Bosscher, P. J. , Plesha, M. E. , and Edil, T. B. , 1999, “ DEM Simulation of Granular Media Structure Interface: Effects of Surface Roughness and Particle Shape,” Int. J. Numer. Anal. Methods Geomech., 23(6), pp. 531–547. [CrossRef]
Wang, L. , Park, J. Y. , and Fu, Y. , 2007, “ Representation of Real Particles for DEM Simulation Using X-Ray Tomography,” Constr. Build. Mater., 21(2), pp. 338–346. [CrossRef]
Lu, M. , and McDowell, G. R. , 2007, “ The Importance of Modelling Ballast Particle Shape in the Discrete Element Method,” Granular Matter, 9(1–2), p. 69.
Ferellec, J. F. , and McDowell, G. R. , 2008, “ A Simple Method to Create Complex Particle Shapes for DEM,” Geomech. Geoengineering: An Int. J., 3(3), pp. 211–216. [CrossRef]
Shamsi, M. M. , and Mirghasemi, A. A. , 2012, “ Numerical Simulation of 3D Semi-Real-Shaped Granular Particle Assembly,” Powder Technol., 28(2), pp. 431–446. [CrossRef]
Zhou, W. , Ma, G. , Chang, X. L. , and Duan, Y. , 2015, “ Discrete Modeling of Rockfill Materials Considering the Irregular Shaped Particles and Their Crushability,” Eng. Comput., 32(4), pp. 1104–1120. [CrossRef]
Feng, Y. T. , and Owen, D. R. J. , 2004, “ A 2D Polygon/Polygon Contact Model: Algorithmic Aspects,” Eng. Comput., 21(2/3/4), pp. 265–277. [CrossRef]
Han, K. , Feng, Y. T. , and Owen, D. R. J. , 2006, “ Polygon-Based Contact Resolution for Superquadrics,” Int. J. Numer. Methods Eng., 66(3), pp. 485–501. [CrossRef]
Feng, Y. T. , Han, K. , and Owen, D. R. J. , 2012, “ Energy-Conserving Contact Interaction Models for Arbitrarily Shaped Discrete Elements,” Comput. Methods Appl. Mech. Eng., 205–208, pp. 169–177. [CrossRef]
Feng, Y. T. , Han, K. , and Owen, D. R. J. , 2017, “ A Generic Contact Detection Framework for Cylindrical Particles in Discrete Element Modelling,” Comput. Methods Appl. Mech. Eng., 315, pp. 632–651. [CrossRef]
Iwashita, K. , and Oda, M. , 1998, “ Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM,” J. Eng. Mech., 124(3), pp. 285–292. [CrossRef]
Jiang, M. J. , Yu, H. S. , and Harris, D. , 2005, “ A Novel Discrete Model for Granular Material Incorporating Rolling Resistance,” Comput. Geotechnics., 32(5), pp. 340–357. [CrossRef]
Huang, X. , Hanley, K. J. , O'Sullivan, C. , and Kwok, C. Y. , 2017, “ Implementation of Rotational Resistance Models: A Critical Appraisal,” Particuology, 34, pp. 14–23. [CrossRef]
Wilson, R. , Dini, D. , and Van Wachem, B. , 2017, “ The Influence of Surface Roughness and Adhesion on Particle Rolling,” Powder Technol., 312, pp. 321–333. [CrossRef]
Greenwood, J. A. , and Williamson, J. P. , 1966, “ Contact of Nominally Flat Surfaces,” Proc. R. Soc. London A: Math., Phys. Eng. Sci., 295(1442), pp. 300–319. [CrossRef]
Greenwood, J. A. , and Tripp, J. H. , 1967, “ The Elastic Contact of Rough Spheres,” ASME J. Appl. Mech., 34(1), pp. 153–159. [CrossRef]
Beheshti, A. , and Khonsari, M. M. , 2014, “ On the Contact of Curved Rough Surfaces: Contact Behavior and Predictive Formulas,” ASME J. Appl. Mech., 81(11), p. 111004. [CrossRef]
Beheshti, A. , and Khonsari, M. M. , 2012, “ Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact,” Tribol. Int., 52, pp. 61–74. [CrossRef]
Pastewka, L. , and Robbins, M. O. , 2016, “ Contact Area of Rough Spheres: Large Scale Simulations and Simple Scaling Laws,” Appl. Phys. Lett., 108(22), p. 221601. [CrossRef]
Pohrt, R. , and Popov, V. L. , 2013, “ Contact Mechanics of Rough Spheres: Crossover From Fractal to Hertzian Behavior,” Adv. Tribol., 2013, pp. 1–4. [CrossRef]
Iida, K. , and Ono, K. , 2003, “ Design Consideration of Contact/Near-Contact Sliders Based on a Rough Surface Contact Model,” ASME J. Tribol., 125(3), pp. 562–570. [CrossRef]
Shi, X. , and Polycarpou, A. A. , 2008, “ Investigation of Contact Stiffness and Contact Damping for Magnetic Storage Head-Disk Interfaces,” ASME J. Tribol., 130(2), p. 021901. [CrossRef]
Yeo, C. D. , Katta, R. R. , and Polycarpou, A. A. , 2009, “ Improved Elastic Contact Model Accounting for Asperity and Bulk Substrate Deformation,” Tribol. Lett., 35(3), pp. 191–203. [CrossRef]
Chang, W. R. , Etsion, I. , and Bogy, D. B. , 1987, “ An Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109(2), pp. 257–263. [CrossRef]
Zhao, Y. , Maietta, D. M. , and Chang, L. , 2000, “ An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow,” ASME J. Tribol., 122(1), pp. 86–93. [CrossRef]
Kogut, L. , and Etsion, I. , 2002, “ Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,” ASME J. Appl. Mech., 69(5), pp. 657–662. [CrossRef]
Kogut, L. , and Etsion, I. , 2003, “ A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces,” Tribol. Trans., 46(3), pp. 383–390. [CrossRef]
Jackson, R. L. , and Green, I. , 2005, “ A Finite Element Study of Elasto-Plastic Hemispherical Contact against a Rigid Flat,” ASME J. Tribol., 127(2), pp. 343–354. [CrossRef]
Jackson, R. L. , and Kogut, L. , 2006, “ A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts,” ASME J. Tribol., 128(1), pp. 209–212. [CrossRef]
Walton, O. R. , and Braun, R. L. , 1986, “ Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks,” J. Rheol., 30(5), pp. 949–980. [CrossRef]
Walton, O. R. , 1993, “ Numerical Simulation of Inelastic, Frictional Particle-Particle Interactions,” Particle Two Phase Flow, Vol. 25, M. C. Roco, ed., Butterworth-Heinemann, Oxford, UK, pp. 884–911.
Ning, Z. , and Thornton, C. , 1993, “ Elastic-Plastic Impact of Fine Particles With a Surface,” Powders and Grains, 93, pp. 33–38.
Thornton, C. , 1997, “ Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres,” ASME J. Appl. Mech., 64(2), pp. 383–386. [CrossRef]
Vu-Quoc, L. , and Zhang, X. , 1999, “ An Elastoplastic Contact Force-Displacement Model in the Normal Direction: Displacementdriven Version,” Proc. R. Soc. London A: Math., Phys. Eng. Sci., 455(1991), pp. 4013–4044. [CrossRef]
Vu-Quoc, L. , Zhang, X. , and Lesburg, L. , 2000, “ A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation,” ASME J. Appl. Mech., 67(2), pp. 363–371. [CrossRef]
Vu-Quoc, L. , Zhang, X. , and Lesburg, L. , 2001, “ Normal and Tangential Force-Displacement Relations for Frictional Elasto-Plastic Contact of Spheres,” Int. J. Solids Struct., 38(36–37), pp. 6455–6489. [CrossRef]
Rathbone, D. , Marigo, M. , Dini, D. , and van Wachem, B. , 2015, “ An Accurate Force-Displacement Law for the Modelling of Elastic-Plastic Contacts in Discrete Element Simulations,” Powder Technol., 282, pp. 2–9. [CrossRef]
Johnson, K. L. , 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK. [CrossRef]
Jackson, R. L. , and Green, I. , 2006, “ A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces,” Tribol. Int., 39(9), pp. 906–914. [CrossRef]
Ma, D. , and Liu, C. , 2015, “ Contact Law and Coefficient of Restitution in Elasto-Plastic Spheres,” ASME J. Appl. Mech., 82(12), p. 121006. [CrossRef]
Wang, H. , Yin, X. , Qi, X. , Deng, Q. , Yu, B. , and Hao, Q. , 2017, “ Experimental and Theoretical Analysis of the Elastic-Plastic Normal Repeated Impacts of a Sphere on a Beam,” Int. J. Solids Struct., 109, pp. 131–142. [CrossRef]
Ghaednia, H. , Pope, S. A. , Jackson, R. L. , and Marghitu, D. B. , 2016, “ A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat,” Tribol. Int., 93, pp. 78–90. [CrossRef]
Abbott, E. J. , and Firestone, F. A. , 1995, “ Specifying Surface Quality: A Method Based on Accurate Measurement and Comparison,” Spie Milestone Ser. Ms, 107, pp. 63–63.
Francis, H. A. , 1976, “ Phenomenological Analysis of Plastic Spherical Indentation,” ASME J. Eng. Mater. Technol., 98(3), pp. 272–281. [CrossRef]


Grahic Jump Location
Fig. 1

Profile of the contact between a smooth sphere and a rough surface: δ≤0

Grahic Jump Location
Fig. 2

Profile of the contact between a smooth sphere and a rough surface: δ≥0

Grahic Jump Location
Fig. 3

Comparison of nondimensional total contact forces between the GW and E-GW models for different degrees of roughness

Grahic Jump Location
Fig. 4

Comparison of pressure distributions over the contact zone: (a) pressure distribution and (b) pressure difference distribution

Grahic Jump Location
Fig. 5

Comparison of deformation distributions with over the contact zone: (a) deformation distribution and (b) deformation difference distribution

Grahic Jump Location
Fig. 6

Force displacement relationships based on different contact models

Grahic Jump Location
Fig. 7

Comparisons of the pressure distribution between different contact models: (a) K = 0.6 and (b) ψ = 4

Grahic Jump Location
Fig. 8

Comparisons of the force–displacement relationship between different contact models: (a) K = 0.6 and (b) ψ = 4




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In