Elishakoff,
I.
, 2014, Resolution of the Twentieth Century Conundrum in Elastic Stability,
World Scientific Publishing,
Singapore.

[CrossRef]
Rotter,
J. M.
, 2011, “
Shell Buckling Design and Assessment and the LBA-MNA Methodology,” Stahlbau,
89(11), pp. 791–803.

[CrossRef]
Rotter,
J. M.
, 2017, “
Challenges and Their Resolution in Both Philosophy and Process to Exploit Advanced Computation in Shell Structure Design,” 11th International Conference on Shell Structures Theory and Applications (SSTA 2017), Gdansk, Poland, Oct. 11–13, pp. 2–15.

Hühne,
C.
,
Rolfes,
R.
,
Breitbach,
E.
, and
Teβmer,
J.
, 2008, “
Robust Design of Composite Cylinder Shells Under Axial Compression—Simulation and Validation,” Thin-Walled Struct.,
46(7–9), pp. 947–962.

[CrossRef]
Wagner,
H. N. R.
,
Hühne,
C.
,
Niemann,
S.
, and
Khakimova,
R.
, 2017, “
Robust Design of Axially Loaded Cylindrical Shells—Simulation and Validation,” Thin-Walled Struct.,
115, pp. 154–162.

[CrossRef]
Krasovsky,
V.
,
Marchenko,
V.
, and
Schmidt,
R.
, 2011, “
Deformation and Buckling of Axially Compressed Cylindrical Shells With Local Loads in Numerical Simulation and Experiments,” Thin-Walled Struct.,
49(5), pp. 576–580.

[CrossRef]
Wagner,
H. N. R.
,
Hühne,
C.
, and
Niemann,
S.
, 2018, “
Robust Knockdown Factors for the Design of Spherical Shells Under External Pressure: Development and Validation,” Int. J. Mech. Sci.,
141, pp. 58–77.

Hilburger,
M.
, 2012, “
Developing the Next Generation Shell Buckling Design Factors and Technologies,” AIAA Paper No. 2012-1686.

Haynie,
W.
,
Hilburger,
M.
,
Bogge,
M.
,
Maspoli,
M.
, and
Kriegesmann,
B.
, 2012, “
Validation of Lower-Bound Estimates for Compression-Loaded Cylindrical Shells,” AIAA Paper No. 2012-1689.

Kriegesmann,
B.
,
Hilburger,
M.
, and
Rolfes,
R.
, 2012, “
The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell,” AIAA Paper No. 2012-1864.

Wang,
B.
,
Hao,
P.
,
Li,
G.
,
Fang,
Y.
,
Wang,
X.
, and
Zhang,
X.
, 2013, “
Determination of Realistic Worst Imperfection for Cylindrical Shells Using Surrogate Model,” Struct. Multidiscip. Optim.,
48(4), pp. 777–794.

[CrossRef]
Hao,
P.
,
Wang,
B.
,
Tian,
K.
,
Du,
K.
, and
Zhang,
X.
, 2015, “
Influence of Imperfection Distributions for Cylindrical Stiffened Shells With Weld Lands,” Thin-Walled Struct.,
93, pp. 177–187.

[CrossRef]
Evkin,
A. Y.
, and
Lykhachova,
O. V.
, 2018, “
Design Buckling Pressure for Thin Spherical Shells: Developments and Validation,” (submitted).

Koiter,
W. T.
, 1963, “
The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells Under Axial Compression,” Proc. K. Ned. Akad. Wet.,
B66(5), pp. 265–279.

Árbocz,
J.
, 1982, “
The Imperfection Data Bank, a Means to Obtain Realistic Buckling Loads,” Buckling of Shells—A State-of-the-Art Colloquium,
E. Ramm
, ed.,
Springer Verlag,
Berlin, pp. 535–567.

[CrossRef]
Berry,
P. A.
, and
Rotter,
J. M.
, 1995, “
Partial Axisymmetric Imperfections and Their Effect on the Buckling Strength of Axially Compressed Cylinders,” Imperfections I Metal Silos Workshop, Lyon, France, Apr. 19, pp. 35–47.

Wullschleger,
L.
, 2006, “
Numerical Investigation of the Buckling Behaviour of Axially Compressed Circular Cylinders Having Parametric Initial Dimple Imperfections,” Doctoral thesis, ETH, Zürich, Switzerland.

ABAQUS, 2017, “
Software Package, ver. 6.14.4 ed.,” Abaqus/Standard, SIMULA, Providence, RI.

Riks,
E.
, 1979, “
An Incremental Approach to the Solution of Snapping and Buckling Problems,” Int. J. Solids Struct.,
15(7), pp. 529–551.

[CrossRef]
Virot,
E.
,
Kreilos,
T.
,
Schneider,
T. M.
, and
Rubinstein,
S. M.
, 2017, “
Stability Landscape of Shell Buckling,” Phys. Rev. Lett.,
119(22), p. 224101.

[CrossRef] [PubMed]
Hutchinson,
J. W.
,
Tennyson,
R. C.
, and
Muggeridge,
D. B.
, 1971, “
Effect of Local Axisymmetric Imperfections on the Buckling Behavior of a Circular Cylindrical Shell Under Axial Compression,” AIAA J.,
9(1), pp. 48–52.

[CrossRef]
Amazigo,
J. C.
, and
Budiansky,
B.
, 1972, “
Asymptotic Formulas for the Buckling Stresses of Axially Compressed Cylinders With Localized or Random Axisymmetric Imperfections,” ASME J. Appl. Mech,
39(1), pp. 179–184.

[CrossRef]
Budiansky,
B.
, and
Hutchinson,
J. W.
, 1972, “
Buckling of Circular Cylindrical Shells under Axial Compression,” Contributions to the Theory of Aircraft Structures, Delft University Press, Delft, The Netherlands, pp. 239–259.

Hutchinson,
J. W.
, 2016, “
Buckling of Spherical Shells Revisited,” Proc. R. Soc. A,
472(2195), p. 20160577.

Lee,
A.
,
Marthelot,
J.
,
Jimenez,
F. L.
,
Hutchinson,
J. W.
, and
Reis,
P. M.
, 2016, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells,” ASME J. Appl. Mech.,
83(11), p. 111005.

[CrossRef]
Hutchinson,
J. W.
, and
Thompson,
J. M. T.
, 2017, “
Nonlinear Buckling Interaction for Spherical Shells Subject to Pressure and Probing Forces,” ASME J. Appl. Mech.,
84(6), p. 061001.

[CrossRef]NASA, 1969, “
Buckling of Thin-Walled Doubly Curved Shells,” NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA SP-8032.

Calladine,
C. R.
, 2018, “
Shell Buckling, Without ‘Imperfections',” Adv. Struct. Eng. (in press).