Gao,
G.
, and
Miska,
S. Z.
, 2009, “
Effects of Boundary Conditions and Friction on Static Buckling of Pipes in a Horizontal Well,” Soc. Pet. Eng. J.,
14(4), pp. 782–796.

Tang,
W.
,
Wan,
T. R.
,
Gould,
D. A.
,
How,
T.
, and
John,
N. W.
, 2012, “
A Stable and Real-Time Nonlinear Elastic Approach to Simulating Guidewire and Catheter Insertions Based on Cosserat Rod,” IEEE Trans. Biomed. Eng.,
59(8), pp. 2211–2218.

[CrossRef] [PubMed]
Wicks,
N.
,
Wardle,
B. L.
, and
Pafitis,
D.
, 2008, “
Horizontal Cylinder-in-Cylinder Buckling Under Compression and Torsion: Review and Application to Composite Drill Pipe,” Int. J. Mech. Sci.,
50(3), pp. 538–549.

[CrossRef]
Gao,
D.-L.
, and
Huang,
W.-J.
, 2015, “
A Review of Down-Hole Tubular String Buckling in Well Engineering,” Pet. Sci.,
12(3), pp. 443–457.

[CrossRef]
Miller,
J.
,
Su,
T.
,
Dussan V,
E.
,
Pabon,
J.
,
Wicks,
N.
,
Bertoldi,
K.
, and
Reis,
P.
, 2015, “
Buckling-Induced Lock-Up of a Slender Rod Injected Into a Horizontal Cylinder,” Int. J. Solids Struct.,
72, pp. 153–164.

[CrossRef]
Miller,
J.
,
Su,
T.
,
Pabon,
J.
,
Wicks,
N.
,
Bertoldi,
K.
, and
Reis,
P.
, 2015, “
Buckling of a Thin Elastic Rod Inside a Horizontal Cylindrical Constraint,” Extreme Mech. Lett.,
3, pp. 36–44.

[CrossRef]
Miller,
J. T.
,
Mulcahy,
C. G.
,
Pabon,
J.
,
Wicks,
N.
, and
Reis,
P. M.
, 2015, “
Extending the Reach of a Rod Injected Into a Cylinder Through Distributed Vibration,” ASME J. Appl. Mech.,
82(2), p. 021003.

[CrossRef]
Bernoulli,
D.
, 1742, “
The 26th Letter to Euler,” Correspondence Mathematique Et Physique, Vol.
2, p. h. Fuss, Saint Petersburg, Russia.

Euler,
L.
, 1744, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti (Additamentum),
apud Marcum-Michaelem Bousquet & Socios,
Lausanne/Geneve, Switzerland, Chap. 1.

Goss,
V. G. A.
, 2008, “
The History of the Planar Elastica: Insights Into Mechanics and Scientific Method,” Sci. Educ.,
18(8), pp. 1057–1082.

[CrossRef]
Kirchhoff,
G.
, 1859, “
Uber Das Gleichgewicht Und Die Bewegung Eines Unendlich Dunnen Elastischen Stabes,” J. Fur Math. (Crelle),
56(56), pp. 285–313.

[CrossRef]
Lazarus,
A.
,
Miller,
J. T.
, and
Reis,
P. M.
, 2013, “
Continuation of Equilibria and Stability of Slender Elastic Rods Using an Asymptotic Numerical Method,” J. Mech. Phys. Solids,
61(8), pp. 1712–1736.

[CrossRef]
Davies,
M. A.
, and
Moon,
F. C.
, 1993, “
3D Spatial Chaos in the Elastica and the Spinning Top: Kirchhoff Analogy,” Chaos,
3(1), pp. 93–99.

[CrossRef] [PubMed]
Maddocks,
J.
, 1984, “
Stability of Nonlinearly Elastic Rods,” Arch. Ration. Mech. Anal.,
85(4), pp. 311–354.

[CrossRef]
Majumdar,
A.
,
Prior,
C.
, and
Goriely,
A.
, 2012, “
Stability Estimates for a Twisted Rod Under Terminal Loads: A Three-Dimensional Study,” J. Elasticity,
109(1), pp. 75–93.

[CrossRef]
van der Heijden,
G.
,
Neukirch,
S.
,
Goss,
V.
, and
Thompson,
J.
, 2003, “
Instability and Self-Contact Phenomena in the Writhing of Clamped Rods,” Int. J. Mech. Sci.,
45(1), pp. 161–196.

[CrossRef]
Manning,
R. S.
,
Rogers,
K. A.
, and
Maddocks,
J. H.
, 1998, “
Isoperimetric Conjugate Points With Application to the Stability of DNA Minicircles,” Proc. R. Soc. A,
454(1980), pp. 3047–3074.

[CrossRef]
Cherstvy,
A. G.
, 2011, “
Torque-Induced Deformations of Charged Elastic DNA Rods: Thin Helices, Loops, and Precursors of DNA Supercoiling,” J. Biol. Phys.,
37(2), pp. 227–238.

[CrossRef] [PubMed]
Love,
A. E. H.
, 2013, A Treatise on the Mathematical Theory of Elasticity,
Cambridge University Press,
Cambridge, UK.

Bigoni, D., ed., 2016, Extremely Deformable Structures,
Springer,
Wien, Austria.

Domokos,
G.
,
Holmes,
P.
, and
Royce,
B.
, 1997, “
Constrained Euler Buckling,” J. Nonlinear Sci.,
7(3), pp. 281–314.

[CrossRef]
Ro,
W.-C.
,
Chen,
J.-S.
, and
Hong,
S.-Y.
, 2010, “
Vibration and Stability of a Constrained Elastica With Variable Length,” Int. J. Solids Struct.,
47(16), pp. 2143–2154.

[CrossRef]
Liakou,
A.
, and
Detournay,
E.
, 2018, “
Constrained Buckling of Variable Length Elastica: Solution by Geometrical Segmentation,” Int. J. Non-Linear Mech.,
99, pp. 204–217.

Denoel,
V.
, and
Detournay,
E.
, 2011, “
Eulerian Formulation of Constrained Elastica,” Int. J. Solids Struct.,
48(3–4), pp. 625–636.

[CrossRef]
Thompson,
J. M. T.
,
Silveira,
M.
,
van der Heijden,
G. H. M.
, and
Wiercigroch,
M.
, 2012, “
Helical Post-Buckling of a Rod in a Cylinder: With Applications to Drill-Strings,” Proc. R. Soc. A,
468(2142), pp. 1591–1614.

[CrossRef]
Thompson,
J.
, and
van der Heijden,
G.
, 2013, “
A Graphical Criterion for the Instability of Elastic Equilibria Under Multiple Loads: With Applications to Drill-Strings,” Int. J. Mech. Sci.,
68, pp. 160–170.

[CrossRef]
Manning,
R. S.
, and
Bulman,
G. B.
, 2005, “
Stability of an Elastic Rod Buckling Into a Soft Wall,” Proc. R. Soc. A,
461(2060), pp. 2423–2450.

[CrossRef]
Fang,
J.
,
Li,
S.-Y.
, and
Chen,
J.-S.
, 2013, “
On a Compressed Spatial Elastica Constrained Inside a Tube,” Acta Mech.,
224(11), pp. 2635–2647.

[CrossRef]
Liakou,
A.
, 2018, “
Application of Optimal Control Method in Buckling Analysis of Constrained Elastica Problems,” Int. J. Solids Struct., in press.

Liberzon,
D.
, 2012, Calculus of Variations and Optimal Control Theory: A Concise Introduction,
Princeton University Press, Oxford,
UK.

Maurer,
H.
, 1979, “
Differential Stability in Optimal Control Problems,” Appl. Math. Optim.,
5(1), pp. 283–295.

[CrossRef]
Goyal,
S.
,
Perkins,
N. C.
, and
Lee,
C. L.
, 2008, “
Non-Linear Dynamic Intertwining of Rods With Self-Contact,” Int. J. Non-Linear Mech.,
43(1), pp. 65–73.

[CrossRef]
Maurer,
H.
, and
Mittelmann,
H. D.
, 1991, “
The Non-Linear Beam Via Optimal Control With Bounded State Variables,” Optim. Control Appl. Methods,
12(1), pp. 19–31.

[CrossRef]
Chen,
J.-S.
, and
Fang,
J.
, 2013, “
Deformation Sequence of a Constrained Spatial Buckled Beam Under Edge Thrust,” Int. J. Non-Linear Mech.,
55, pp. 98–101.

[CrossRef]
Bryson,
A.
, 2016, Applied Optimal Control: Optimization, Estimation and Control,
CRC Press, Boca Raton, FL.

Ross,
M. I.
, 2015, A Primer on Pontryagin's Principle in Optimal Control,
Collegiate Publishers, Oceanside, CA.

Nocedal,
J.
, 2006, Numerical Optimization,
Springer,
New York.

Falugi,
P.
, and
van Wyk,
K. E.
, 2010, “
Imperial College London Optimal Control Software User Guide (ICLOCS),” Imperial College London, London.

Wachter,
A.
, and
Biegler,
L. T.
, 2005, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming,” Math. Program.,
106(1), pp. 25–57.

[CrossRef]
Biegler,
L.
, and
Zavala,
V.
, 2009, “
Large-Scale Nonlinear Programming Using IPOPT: An Integrating Framework for Enterprise-Wide Dynamic Optimization,” Comput. Chem. Eng.,
33(3), pp. 575–582.

[CrossRef]
Bigoni,
D.
,
Corso,
F. D.
,
Bosi,
F.
, and
Misseroni,
D.
, 2015, “
Eshelby-Like Forces Acting on Elastic Structures: Theoretical and Experimental Proof,” Mech. Mater.,
80(Pt. B), pp. 368–374.

[CrossRef]
Bigoni,
D.
,
Dal Corso,
F.
, and
Misseroni,
D.
,
Bosi,
F.
, 2014, “
Torsional Locomotion,” Proc. R. Soc. A,
470(2171), p. 20140599.

Bosi,
F.
,
Misseroni,
D.
,
Corso,
F.
, and
Bigoni,
D.
, 2015, “
Development of Configurational Forces During the Injection of an Elastic Rod,” Extreme Mech. Lett.,
4, pp. 83–88.

[CrossRef]
Hartl,
R. F.
,
Sethi,
S. P.
, and
Vickson,
R. G.
, 1995, “
A Survey of the Maximum Principles for Optimal Control Problems With State Constraints,” SIAM Rev.,
37(2), pp. 181–218.

[CrossRef]
Dill,
E. H.
, 1992, “
Kirchhoff's Theory of Rods,” Arch. Hist. Exact Sci.,
44(1), pp. 1–23.

[CrossRef]
Lee,
A. A.
,
Le Gouellec,
C.
, and
Vella,
D.
, 2015, “
The Role of Extensibility in the Birth of a Ruck in a Rug,” Extreme Mech. Lett.,
5, pp. 81–87.

[CrossRef]
Peterson,
K.
, and
Manning,
R.
, 2010, “
Ineffective Perturbations in a Planar Elastica,” Involve,
2(5), pp. 559–580.

[CrossRef]
Weiss,
H.
, 2002, “
Dynamics of Geometrically Nonlinear Rods: I. Mechanical Models and Equations of Motion,” Nonlinear Dyn.,
30(4), pp. 357–381.

[CrossRef]
Atanackovic,
T.
, 1997, Stability Theory of Elastic Rods,
World Scientific Publishing,
London.

[CrossRef]