Al-Mukhtar, M.
, 1995, “Macroscopic Behavior and Microstructural Properties of a Kaolinite Clay Under Controlled Mechanical and Hydraulic State,” First International Conference on Unsaturated Soils/unsat'95, Paris, France, Sept. 6–8, pp. 3–9.

https://trid.trb.org/view/468401
Delage, P.
,
Audiguier, M.
,
Cui, Y. J.
, and
Howat, M. D.
, 1996, “Microstructure of a Compacted Silt,” Can. Geotech. J., 33(1), pp. 150–158.

[CrossRef]
Didwania, A. K.
, 2002, “Micromechanical Basis of Concept of Effective Stress,” J. Eng. Mech., 128(8), pp. 864–868.

[CrossRef]
Koliji, A.
,
Laloui, L.
,
Cusinier, O.
, and
Vulliet, L.
, 2006, “Suction Induced Effects on the Fabric of a Structured Soil,” Transp. Porous Media, 64(2), pp. 261–278.

[CrossRef]
Borja, R. I.
, and
Koliji, A.
, 2009, “On the Effective Stress in Unsaturated Porous Continua With Double Porosity,” J. Mech. Phys. Solids, 57(8), pp. 1182–1193.

[CrossRef]
Straughan, B.
, 2017, Mathematical Aspects of Multi-Porosity Continua, Springer, Cham, Switzerland.

[CrossRef]
Pruess, K.
, and
Narasimhan, T. N.
, 1985, “A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media,” Soc. Pet. Eng. J., 25(1), pp. 14–26.

van Genuchten, M. T.
, and
Wierenga, P. J.
, 1976, “Mass Transfer Studies in Sorbing Porous Media—I: Analytical Solutions,” Soil Sci. Soc. Am. J., 40(4), pp. 473–480.

[CrossRef]
Šimunek, J.
,
Jarvis, N. J.
,
van Genuchten, M. T.
, and
Gärdenäs, A.
, 2003, “Review and Comparison of Models for Describing Non-Equilibrium and Preferential Flow and Transport in the Vadose Zone,” J. Hydrol., 272(1–4), pp. 14–35.

[CrossRef]
Geiger, S.
,
Dentz, M.
, and
Neuweiler, I.
, 2013, “A Novel Multi-Rate Dual-Porosity Model for Improved Simulation of Fractured and Multiporosity Reservoirs,” SPE J., 18(04), pp. 670–684.

[CrossRef]
Warren, J. E.
, and
Root, P. J.
, 1963, “The Behavior of Naturally Fractured Reservoirs,” Soc. Pet. Eng. J., 3(03), pp. 245–255.

[CrossRef]
Hayes, J. B.
, 1979, “Sandstone Diagenesis—The Hole Truth,” *Aspects of Diagenesis*, Vol. 26, Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 127–139.

Schmidt, V.
, and
Mcdonald, D. A.
, 1979, “Texture and Recognition of Secondary Porosity in Sandstones,” *Aspects of Diagenesis*, Vol. 26, Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 209–225.

Cuisinier, O.
, and
Laloui, L.
, 2004, “Fabric Evolution During Hydromechanical Loading of a Compacted Silt,” Int. J. Numer. Anal. Methods Geomech., 28(6), pp. 483–499.

[CrossRef]
Barenblatt, G. I.
,
Zheltov, I. P.
, and
Kochina, I. N.
, 1960, “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks (Strata),” J. Appl. Math. Mech., 24(5), pp. 1286–1303.

[CrossRef]
Dykhuizen, R. C.
, 1990, “A New Coupling Term for Dual-Porosity Models,” Water Resour. Res., 26(2), pp. 351–356.

Vogel, T.
,
Gerke, H. H.
,
Zhang, R.
, and
van Genuchten, M. T.
, 2000, “Modeling Flow and Transport in a Two-Dimensional Dual-Permeability System With Spatially Variable Hydraulic Properties,” J. Hydrol., 238(1–2), pp. 78–89.

[CrossRef]
Balogun, A. S.
,
Kazemi, H.
,
Ozkan, E.
,
Al-Kobaisi, M.
, and
Ramirez, B. A.
, 2007, “Verification and Proper Use of Water-Oil Transfer Function for Dual-Porosity and Dual-Permeability Reservoirs,” SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, Mar. 11–14, SPE Paper No. SPE-104580-MS.

Lowell, S.
,
Shields, J. E.
,
Thomas, M. A.
, and
Thommes, M.
, 2012, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer Science and Business Media, New York.

Stock, S. R.
, 2008, Microcomputed Tomography: Methodology and Applications, CRC Press, Boca Raton, FL.

[CrossRef]
Arbogast, T.
,
Douglas, J. J.
, and
Hornung, U.
, 1990, “Derivation of the Double Porosity Model of Single Phase Flow Via Homogenization Theory,” SIAM J. Math. Anal., 21(4), pp. 823–836.

[CrossRef]
Amaziane, B.
, and
Pankratov, L.
, 2015, “Homogenization of a Model for Water–Gas Flow Through Double-Porosity Media,” Math. Methods Appl. Sci., 39(3), pp. 425–451.

[CrossRef]
Boutin, C.
, and
Royer, P.
, 2015, “On Models of Double Porosity Poroelastic Media,” Geophys. J. Int., 203(3), pp. 1694–1725.

[CrossRef]
Amaziane, B.
,
Antontsev, S.
,
Pankratov, L. A.
, and
Piatnitski, A.
, 2010, “Homogenization of Immiscible Compressible Two-Phase Flow in Porous Media: Application to Gas Migration in a Nuclear Waste Repository,” Multiscale Model. Simul., 8(5), pp. 2023–2047.

[CrossRef]
Hornung, U.
, 1996, Homogenization and Porous Media, Springer-Verlag, New York.

Lubliner, J.
, 2008, Plasticity Theory, Dover Publications Inc., Mineola, NY.

Borja, R. I.
, 2013, Plasticity: Modeling and Computation, Springer Science and Business Media, New York.

[PubMed] [PubMed]
Evans, L. C.
, 1998, Partial Differential Equations, American Mathematical Society, Providence, RI.

Bowen, R.
, 2014, Porous Elasticity: Lectures on the Elasticity of Porous Materials as an Application of the Theory of Mixtures, Texas A&M University, College Station, TX.

Chen, Z. X.
, 1989, “Transient Flow of Slightly Compressible Fluids Through Double-Porosity, Double-Permeability Systems-a State-of-the-Art Review,” Transp. Porous Media, 4(2), pp. 147–184.

[CrossRef]
Haggerty, R.
, and
Gorelick, S. M.
, 1995, “
Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media With Pore-Scale Heterogeneity,” Water Resour. Res., 31(10), pp. 2383–2400.

[CrossRef]
Bowen, R. M.
, 1976, “Theory of Mixtures,” Continuum Physics,
A. C. Eringen
, ed., Vol. III, Academic Press, New York.

[CrossRef]
Pekař, M.
, and
Samohýl, I.
, 2014, The Thermodynamics of Linear Fluids and Fluid Mixtures, Springer, Cham, Switzerland.

[CrossRef]
de Boer, R.
, 2012, Theory of Porous Media: Highlights in Historical Development and Current State, Springer Science & Business Media, New York.

Atkin, R. J.
, and
Craine, R. E.
, 1976, “Continuum Theories of Mixtures: Basic Theory and Historical Development,” Q. J. Mech. Appl. Math., 29(2), pp. 209–244.

[CrossRef]
Ziegler, H.
, 1983, An Introduction to Thermomechanics, North Holland Publishing Company, Amsterdam, The Netherlands.

Ziegler, H.
, and
Wehrli, C.
, 1987, “The Derivation of Constitutive Relations From the Free Energy and the Dissipation Function,” Adv. Appl. Mech., 25, pp. 183–238.

[CrossRef]
Srinivasa, A. R.
, and
Srinivasan, S. M.
, 2009, Inelasticity of Materials: An Engineering Approach and a Practical Guide, Vol. 80, World Scientific Publishing, Singapore.

[CrossRef]
Rajagopal, K. R.
, and
Srinivasa, A. R.
, 2001, “Modeling Anisotropic Fluids Within the Framework of Bodies With Multiple Natural Configurations,” J. Non-Newtonian Fluid Mech., 99(2–3), pp. 109–124.

[CrossRef]
Xu, C.
,
Mudunuru, M. K.
, and
Nakshatrala, K. B.
, 2016, “Material Degradation Due to Moisture and Temperature. part 1: Mathematical Model, Analysis, and Analytical Solutions,” Continuum Mech. Thermodyn., 28(6), pp. 1847–1885.

[CrossRef]
Karra, S.
, 2013, “Modeling the Diffusion of a Fluid Through Viscoelastic Polyimides,” Mech. Mater., 66, pp. 120–133.

[CrossRef]
Truesdell, C.
, 1991, A First Course in Rational Continuum Mechanics, Vol. I, Academic Press, New York.

Callen, H. B.
, 1985, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York.

Batchelor, G. K.
, 2000, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, UK.

[CrossRef]
Brinkman, H. C.
, 1947, “On the Permeability of the Media Consisting of Closely Packed Porous Particles,” Appl. Sci. Res., A1(1), pp. 81–86.

Rajagopal, K. R.
, 2007, “On a Hierarchy of Approximate Models for Flows of Incompressible Fluids Through Porous Solids,” Math. Models Methods Appl. Sci., 17(02), pp. 215–252.

[CrossRef]
Joodat, S. H. S.
,
Nakshatrala, K. B.
, and
Ballarini, R.
, 2018, “Modeling Flow in Porous Media With Double Porosity/Permeability: A Stabilized Mixed Formulation, Error Analysis, and Numerical Solutions,” Comput. Methods Appl. Mech. Eng., 337(1), pp. 632–676.

[CrossRef]
Shabouei, M.
, and
Nakshatrala, K. B.
, 2016, “
Mechanics-Based Solution Verification for Porous Media Models,” Commun. Comput. Phys., 20(05), pp. 1127–1162.

[CrossRef]
Love, A. E. H.
, 1920, A Treatise on the Mathematical Theory of Elasticity, 3rd ed., Cambridge University Press, New York.

Sadd, M. H.
, 2009, Elasticity: Theory, Applications, and Numerics, Academic Press, Burlington, MA.

Gilbarg, D.
, and
Trudinger, N. S.
, 2001, Elliptic Partial Differential Equations of Second Order, Springer, New York.

Lighthill, M. J.
, 1958, An Introduction to Fourier Analysis and Generalised Functions, Cambridge University Press, Cambridge, UK.

[CrossRef]
Tricomi, F. G.
, 1957, Integral Equations, Interscience Publishers, New York.

Stackgold, I.
, 1998, Green's Functions and Boundary Value Problems. Wiley, Interscience, New York.

Atkinson, K. E.
, 1997, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, UK.

[CrossRef]
Polyanin, A. D.
, and
Manzhirov, A. V.
, 2008, Handbook of Integral Equations, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL.

[CrossRef]
Dickenson, T. C.
, 1997, Filters and Filtration Handbook, 4th ed., Elsevier, New York.

Bowman, F.
, 2010, Introduction to Bessel Functions, Dover Publications,
Mineola, NY.