Zou,
W. N.
,
Lee,
Y. G.
, and
He,
Q. C.
, 2017, “Inclusions Inside a Bounded Elastic Body Undergoing Anti-Plane Shear,” Math. Mech. Solids,
23(4), pp. 588–605.

[CrossRef]
Zappalorto,
M.
,
Lazzarin,
P.
, and
Yates,
J. R.
, 2008, “Elastic Stress Distributions for Hyperbolic and Parabolic Notches in round Shafts Under Torsion and Uniform Antiplane Shear Loadings,” Int. J. Solids Struct.,
45(18–19), pp. 4879–4901.

[CrossRef]
Shahzad,
S.
, and
Dal Corso,
F.
, 2018, “Torsion Elastic Solids with Sparsely Distributed Collinear Voids,” (in preparation).

Radaj,
D.
, 1990, Design and Analysis of Fatigue Resistant Welded Structures,
Elsevier, Cambridge, UK.

[CrossRef]
Savin,
G. N.
, 1961, Stress Concentration around Holes,
Pergamon Press, London.

Muskhelishvili,
N. I.
, 1963, Some Basic Problems of the Mathematical Theory of Elasticity,
P. Noordhoff Ltd.,
Groningen, The Netherlands.

Slaughter,
W. S.
, 2002, The Linearized Theory of Elasticity,
Springer Science & Business Media, New York.

[CrossRef]
Toubal,
L.
,
Karama,
M.
, and
Lorrain,
B.
, 2005, “Stress Concentration in a Circular Hole in Composite Plate,” Compos. Struct.,
68(1), pp. 31–36.

[CrossRef]
Givoli,
D.
, and
Elishakoff,
I.
, 1992, “Stress Concentration at a Nearly Circular Hole With Uncertain Irregularities,” ASME. J. Appl. Mech.,
59(2S), pp. 65–71.

[CrossRef]
Hoff,
N. J.
, 1981, “Stress Concentrations in Cylindrically Orthotropic Composite Plates With a Circular Hole,” ASME. J. Appl. Mech.,
48(3), pp. 563–569.

[CrossRef]
Lubarda,
V. A.
, 2003, “Circular Inclusions in Anti-Plane Strain Couple Stress Elasticity,” Int. J. Solids Struct.,
40(15), pp. 3827–3851.

[CrossRef]
Meguid,
S. A.
, and
GongStress,
S. X.
, 1993, “Stress Concentration Around Interacting Circular Holes: A Comparison Between Theory and Experiments,” Eng. Fract. Mech.,
44(2), pp. 247–256.

[CrossRef]
Misseroni,
D.
,
Dal Corso,
F.
,
Shahzad,
S.
, and
Bigoni,
D.
, 2014, “Stress Concentration Near Stiff Inclusions: Validation of Rigid Inclusion Model and Boundary Layers by Means of Photoelasticity,” Eng. Fract. Mech.,
121–122, pp. 87–97.

[CrossRef]
Dal Corso,
F.
,
Bigoni,
D.
,
Noselli,
G.
,
Misseroni,
D.
, and
Shahzad,
S.
, 2014, “Rigid Inclusions: Stress Singularity, Inclusion Neutrality and Shear Bands,” Third International Conference on Fracture, Fatigue and Wear, Kitakyushu, Japan, Sept. 1–3, pp. 40–42.

Setiawan,
Y.
,
Gan,
B. S.
, and
Han,
A. L.
, 2017, “Modeling of the ITZ Zone in Concrete: Experiment and Numerical Simulation,” Comput. Concr.,
19(6), pp. 647–655.

Ru,
C. Q.
, and
Schiavone,
P.
, 1997, “A Circular Inhomogeneity With Circumferentially Inhomogeneous Interface in Antiplane Shear,” Proc. R. Soc. A,
453(1967), pp. 2551–2572.

[CrossRef]
Zappalorto,
M.
,
Lazzarin,
P.
, and
Berto,
F.
, 2009, “Stress Concentration Near Holes in the Elastic Plane Subjected to Antiplane Deformation,” Mater. Sci.,
48(4), pp. 415–426.

Sih,
G. C.
, 1965, “Stress Distribution Near Internal Crack Tips for Longitudinal Shear Problems,” ASME J. Appl. Mech.,
32(1), pp. 51–58.

[CrossRef]
Kohno,
Y.
, and
Ishikawa,
H.
, 1995, “Singularities and Stress Intensities at the Corner Point of a Polygonal Hole and Rigid Polygonal Inclusion Under Antiplane Shear,” Int. J. Eng. Sci.,
33(11), pp. 1547–1560.

[CrossRef]
Seweryn,
A.
, and
Molski,
K.
, 1996, “Elastic Stress Singularities and Corresponding Generalized Stress Intensity Factors for Angular Corners Under Various Boundary Conditions,” Eng. Fract. Mech.,
55(4), pp. 529–556.

[CrossRef]
Lubarda,
V. A.
, 2015, “On the Circumferential Shear Stress Around Circular and Elliptical Holes,” Arch. Appl. Mech.,
85(2), pp. 223–235.

[CrossRef]
Movchan,
A. B.
,
Movchan,
N. V.
, and
Poulton,
C. G.
, 2002, Asymptotic Models of Fields in Dilute and Densely Packed Composites,
Imperial College Press, London.

[CrossRef]
Chen,
J.
, and
Wu,
A.
, 2006, “Null-Field Approach for the Multi-Inclusion Problem Under Antiplane Shears,” ASME. J. Appl. Mech.,
74(3), pp. 469–487.

[CrossRef]
Sendeckyj,
G. P.
, 1971, “Multiple Circular Inclusion Problems in Longitudinal Shear Deformation,” J. Elasticity,
1(1), pp. 83–86.

[CrossRef]
Gong,
S. X.
, 1995, “Antiplane Interaction Among Multiple Circular Inclusions,” Mech. Res. Commun.,
22(3), pp. 257–262.

[CrossRef]
Bacca,
M.
,
Dal Corso,
F.
,
Veber,
D.
, and
Bigoni,
D.
, 2013, “Anisotropic Effective Higher-Order Response of Heterogeneous Cauchy Elastic Materials,” Mech. Res. Commun.,
54, pp. 63–71.

[CrossRef]
Bigoni,
D.
, and
Drugan,
W. J.
, 2007, “Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials,” ASME J. Appl. Mech.,
74(4), pp. 741–753.

[CrossRef]
Schiavone,
P.
, 2003, “Neutrality of the Elliptic Inhomogeneity in the Case of Non-Uniform Loading,” Int. J. Eng. Sci.,
41(18), pp. 2081–2090.

[CrossRef]
Van Vliet,
D.
,
Schiavone,
P.
, and
Mioduchowski,
A.
, 2003, “On the Design of Neutral Elastic Inhomogeneities in the Case of Non-Uniform Loading,” Math. Mech. Solids,
41(2), pp. 2081–2090.

Dal Corso,
F.
,
Shahzad,
S.
, and
Bigoni,
D.
, 2016, “Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear Fields—Part I: Formulation and Full-Field Solution,” Int. J. Solids Struct.,
85–86, pp. 67–75.

[CrossRef]
Dal Corso,
F.
,
Shahzad,
S.
, and
Bigoni,
D.
, 2016, “Isotoxal Star-Shaped Polygonal Voids and Rigid Inclusions in Nonuniform Antiplane Shear Fields—Part II: Singularities, Annihilation and Invisibility,” Int. J. Solids Struct.,
85–86, pp. 76–88.

[CrossRef]
Shahzad,
S.
, 2016, “Stress Singularities, Annihilations and Invisibilities Induced by Polygonal Inclusions in Linear Elasticity,” Ph.D. thesis, University of Trento, Trento, Italy.

http://eprints-phd.biblio.unitn.it/1769/
Shahzad,
S.
,
Dal Corso,
F.
, and
Bigoni,
D.
, 2016, “Hypocycloidal Inclusions in Nonuniform Out-of-Plane Elasticity: Stress Singularity vs Stress Reduction,” J. Elasticity,
126(2), pp. 215–229.

[CrossRef]
Shahzad,
S.
, and
Niiranen,
J.
, 2018, “Analytical Solution With Validity Analysis for an Elliptical Void and Rigid Inclusion Under Uniform and Nonuniform Antiplane Loading,” (in preparation).

Polyanin,
A. D.
, 2002, Handbook of Linear Partial Differential Equations for Engineers and Scientists,
Chapman and Hall/CRC, Boca Raton, FL.

Morrison,
N.
, 1994, Introduction to Fourier Analysis,
Wiley,
New York.

Carslaw,
H. S.
, and
Jaeger,
J. C.
, 1959, Conduction of Heat in Solids,
Oxford University Press, London.

Chen,
Z.
,
Zhu,
W.
,
Di,
Q.
, and
Wang,
W.
, 2015, “Burst Pressure Analysis of Pipes With Geometric Eccentricity and Small Thickness-to-Diameter Ratio,” J. Pet. Sci. Eng.,
127, pp. 452–458.

[CrossRef]