Research Papers

Viscoelastic Effect on the Wrinkling of an Inflated Dielectric-Elastomer Balloon

[+] Author and Article Information
Guoyong Mao, Yuhai Xiang, Xiaoqiang Huang, Shaoxing Qu

State Key Laboratory of Fluid Power and
Mechatronic System,
Key Laboratory of Soft Machines and Smart
Devices of Zhejiang Province,
Department of Engineering Mechanics,
Zhejiang University,
Hangzhou 310027, China

Wei Hong

Department of Aerospace Engineering,
Iowa State University,
Ames, IA 50011

Tongqing Lu

State Key Laboratory for Strength and Vibration
of Mechanical Structures,
Department of Engineering Mechanics,
School of Aerospace Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China

1Correponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received February 15, 2018; final manuscript received March 16, 2018; published online April 17, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(7), 071003 (Apr 17, 2018) (8 pages) Paper No: JAM-18-1096; doi: 10.1115/1.4039672 History: Received February 15, 2018; Revised March 16, 2018

Viscoelasticity plays an important role in the instability and performance of soft transducers. Wrinkling, an instability phenomenon commonly observed on soft materials, has been studied extensively. In this paper, we theoretically investigate the viscoelastic effect on the wrinkle formation of a dielectric-elastomer (DE) balloon subjected to combined electromechanical loads. Results show that the critical voltage for the wrinkle formation of a DE balloon gradually decreases as the material undergoes viscoelastic relaxation and finally reaches a stable value. The wrinkles in the lateral direction always have critical voltages equal to or lower than those in the longitudinal direction. What is more, the nucleation sites of wrinkles always move from the apex to the rim of DE balloon with the viscoelastic relaxation of DE. It takes less time for the DE balloon with higher pressure to reach the stable state. Higher pressure also leads to the stable wrinkle nucleation site moving closer to the fixed edge of the DE balloon. An experiment is conducted to illustrate the effect of viscoelasticity on the wrinkle propagation of a DE balloon, and the results agree well with the model predictions. This study provides a guide in the wrinkling control of a DE balloon and may help the future design of DE transducers.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Mao, G. , Huang, X. , Liu, J. , Li, T. , Qu, S. , and Yang, W. , 2015, “ Dielectric Elastomer Peristaltic Pump Module With Finite Deformation,” Smart Mater. Struct., 24(7), p. 075026. [CrossRef]
Pelrine, R. , Kornbluh, R. , Pei, Q. , and Joseph, J. , 2000, “ High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,” Science, 287(5454), pp. 836–839. [CrossRef] [PubMed]
Jin Adrian Koh, S. , Keplinger, C. , Li, T. , Bauer, S. , and Suo, Z. , 2011, “ Dielectric Elastomer Generators: How Much Energy Can Be Converted?,” IEEE/ASME Trans. Mechatronics, 16(1), pp. 33–41. [CrossRef]
Gu, G. Y. , Gupta, U. , Zhu, J. , Zhu, L. M. , and Zhu, X. , 2017, “ Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator,” IEEE Trans. Robot., 33(5), pp. 1263–1271.
Mao, G. , Huang, X. , Diab, M. , Liu, J. , and Qu, S. , 2016, “ Controlling Wrinkles on the Surface of a Dielectric Elastomer Balloon,” Extreme Mech. Lett., 9, pp. 139–146. [CrossRef]
Zhou, J. , Jiang, L. , and Khayat, R. E. , 2014, “ Viscoelastic Effects on Frequency Tuning of a Dielectric Elastomer Membrane Resonator,” J. Appl. Phys., 115(12), p. 124106. [CrossRef]
Plante, J.-S. , and Dubowsky, S. , 2006, “ Large-Scale Failure Modes of Dielectric Elastomer Actuators,” Int. J. Solids Struct., 43(25–26), pp. 7727–7751. [CrossRef]
Li, T. , Qu, S. , and Yang, W. , 2012, “ Energy Harvesting of Dielectric Elastomer Generators Concerning Inhomogeneous Fields and Viscoelastic Deformation,” J. Appl. Phys., 112(3), p. 034119. [CrossRef]
Mao, G. , Huang, X. , Diab, M. , Li, T. , Qu, S. , and Yang, W. , 2015, “ Nucleation and Propagation of Voltage-Driven Wrinkles in an Inflated Dielectric Elastomer Balloon,” Soft Matter, 11(33), pp. 6569–6575. [CrossRef] [PubMed]
Liu, F. , and Zhou, J. , 2017, “ Shooting and Arc-Length Continuation Method for Periodic Solution and Bifurcation of Nonlinear Oscillation of Viscoelastic Dielectric Elastomers,” Trans. ASME J. Appl. Mech., 85(1), p. 011005. [CrossRef]
Lu, T. , Wang, J. , Yang, R. , and Wang, T. J. , 2016, “ A Constitutive Model for Soft Materials Incorporating Viscoelasticity and Mullins Effect,” Trans. ASME J. Appl. Mech., 84(2), p. 021010. [CrossRef]
Chen, F. , and Wang, M. Y. , 2017, “ Simulation of Networked Dielectric Elastomer Balloon Actuators,” IEEE Trans. Robot. Autom. Lett., 1(1), pp. 221–226. [CrossRef]
Jung, K. , Kim, K. J. , and Choi, H. R. , 2008, “ A Self-Sensing Dielectric Elastomer Actuator,” Sens. Actuators, A, 143(2), pp. 343–351. [CrossRef]
Carpi, F. , Frediani, G. , Turco, S. , and De Rossi, D. , 2011, “ Bioinspired Tunable Lens With Muscle-Like Electroactive Elastomers,” Adv. Funct. Mater, 21(21), pp. 4152–4158. [CrossRef]
Kaltseis, R. , Keplinger, C. , Baumgartner, R. , Kaltenbrunner, M. , Li, T. , Mächler, P. , Schwödiauer, R. , Suo, Z. , and Bauer, S. , 2011, “ Method for Measuring Energy Generation and Efficiency of Dielectric Elastomer Generators,” Appl. Phys. Lett., 99(16), p. 162904. [CrossRef]
Tugui, C. , Ursu, C. , Sacarescu, L. , Asandulesa, M. , Stoian, G. , Ababei, G. , and Cazacu, M. , 2017, “ Stretchable Energy Harvesting Devices: Attempts to Produce High-Performance Electrodes,” ACS Sustainable Chem. Eng., 5(9), pp. 7851–7858. [CrossRef]
Li, Z. , Wang, Y. , Foo, C. C. , Godaba, H. , Zhu, J. , and Yap, C. H. , 2017, “ The Mechanism for Large-Volume Fluid Pumping Via Reversible Snap-Through of Dielectric Elastomer,” J. Appl. Phys., 122(8), p. 084503. [CrossRef]
Wang, F. , Yuan, C. , Lu, T. , and Wang, T. J. , 2017, “ Anomalous Bulging Behaviors of a Dielectric Elastomer Balloon Under Internal Pressure and Electric Actuation,” J. Mech. Phys. Solids, 102, pp. 1–16. [CrossRef]
Li, T. , Keplinger, C. , Baumgartner, R. , Bauer, S. , Yang, W. , and Suo, Z. , 2013, “ Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability,” J. Mech. Phys. Solids, 61(2), pp. 611–628. [CrossRef]
Liang, X. , and Cai, S. , 2018, “ New Electromechanical Instability Modes in Dielectric Elastomer Balloons,” Int. J. Solids Struct., 132–133, pp. 96–104. [CrossRef]
Leng, J. , Liu, L. , Liu, Y. , Yu, K. , and Sun, S. , 2009, “ Electromechanical Stability of Dielectric Elastomer,” Appl. Phys. Lett., 94(21), p. 061921. [CrossRef]
Liu, L. , Zhang, Z. , Li, J. , Li, T. , Liu, Y. , and Leng, J. , 2015, “ Stability of Dielectric Elastomer/Carbon Nanotube Composites Coupling Electrostriction and Polarization,” Composites, Part B, 78, pp. 35–41. [CrossRef]
Li, K. , Wu, W. , Jiang, Z. , and Cai, S. , 2017, “ Voltage-Induced Wrinkling in a Constrained Annular Dielectric Elastomer Film,” Trans. ASME J. Appl. Mech., 85(1), p. 011007. [CrossRef]
Yang, S. , Zhao, X. , and Sharma, P. , 2017, “ Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics,” Trans. ASME J. Appl. Mech., 84(3), p. 031008. [CrossRef]
Ho, S. , Banerjee, H. , Foo, Y. Y. , Godaba, H. , Aye, W. M. M. , Zhu, J. , and Yap, C. H. , 2017, “ Experimental Characterization of a Dielectric Elastomer Fluid Pump and Optimizing Performance Via Composite Materials,” J. Intell. Mater. Syst. Struct., 28(20), pp. 3054–3065. [CrossRef]
Zhao, X. , Koh, S. J. A. , and Suo, Z. , 2011, “ Nonequilibrium Thermodynamics of Dielectric Elastomers,” Int. J. Appl. Mech., 3(2), pp. 203–217. [CrossRef]
Hong, W. , 2011, “ Modeling Viscoelastic Dielectrics,” J. Mech. Phys. Solids, 59(3), pp. 637–650. [CrossRef]
Bai, Y. , Jiang, Y. , Chen, B. , Chiang Foo, C. , Zhou, Y. , Xiang, F. , Zhou, J. , Wang, H. , and Suo, Z. , 2014, “ Cyclic Performance of Viscoelastic Dielectric Elastomers With Solid Hydrogel Electrodes,” Appl. Phys. Lett., 104(6), p. 062902. [CrossRef]
Kollosche, M. , Kofod, G. , Suo, Z. , and Zhu, J. , 2015, “ Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer,” J. Mech. Phys. Solids, 76, pp. 47–64. [CrossRef]
Wang, H. , Lei, M. , and Cai, S. , 2013, “ Viscoelastic Deformation of a Dielectric Elastomer Membrane Subject to Electromechanical Loads,” J. Appl. Phys., 113(21), p. 213508. [CrossRef]
Sheng, J. , Chen, H. , Liu, L. , Zhang, J. , Wang, Y. , and Jia, S. , 2013, “ Dynamic Electromechanical Performance of Viscoelastic Dielectric Elastomers,” J. Appl. Phys., 114(5), p. 134101.
Gent, A. N. , 1996, “ A New Constitutive Relation for Rubber,” Rubber Chem. Technol., 69(1), pp. 59–61. [CrossRef]
Zhao, X. , and Suo, Z. , 2010, “ Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation,” Phys. Rev. Lett., 104(17), p. 178302. [CrossRef] [PubMed]
Mao, G. , Wu, L. , Liang, X. , and Qu, S. , 2017, “ Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet,” Trans. ASME J. Appl. Mech., 84(11), p. 111005. [CrossRef]
Wang, H. , Cai, S. , Carpi, F. , and Suo, Z. , 2012, “ Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators,” Trans. ASME J. Appl. Mech., 79(3), p. 031008. [CrossRef]
Zhang, J. , Wang, Y. , Chen, H. , and Li, B. , 2015, “ Energy Harvesting Performance of Viscoelastic Polyacrylic Dielectric Elastomers,” Int. J. Smart Nano Mater., 6(3), pp. 162–170. [CrossRef]


Grahic Jump Location
Fig. 2

The theoretical predictions of the behaviors of a DE balloon without viscoelastic effect (ξ1=1 and ξ2=1): (a) The pressure–volume curve of a DE balloon, (b) the critical voltages of the wrinkle formation of a DE balloon for s1=0 and s2=0, (c) the wrinkle nucleation site of a DE balloon for s1=0, and (d) the wrinkle nucleation site of a DE balloon for s2=0

Grahic Jump Location
Fig. 1

A viscoelastic model of DE and the free-body diagrams of an inflated DE balloon: (a) A nonlinear rheological model consists of two springs and one dashpot, (b) a circular DE membrane prestretched from R0 to r0, (c) an inflated DE balloon and a circular ring are marked, and (d) a free-body diagram for half of the circular ring shown in (c).

Grahic Jump Location
Fig. 3

The propagation of the critical voltage of a DE balloon with time when subjected to various pressures: (a) P¯=0.5, (b) P¯=1.5, (c) P¯=3, and (d) P¯=10

Grahic Jump Location
Fig. 4

The propagation of the winkle nucleation site (s1=0) of a DE balloon with time when subjected to various pressures: (a) P¯=0.5, (b) P¯=1.5, (c) P¯=3, and (d) P¯=10

Grahic Jump Location
Fig. 5

The propagation of the winkle nucleation site (s2=0) of a DE balloon with time subjected to various pressures: (a) P¯=0.5, (b) P¯=1.5, (c) P¯=3, and (d) P¯=10

Grahic Jump Location
Fig. 6

Wrinkle propagation of an inflated DE balloon when subjected to pressure and step voltage at different time: (a) initial state, (b) 3 min, (c) 6 min, and (d) 9 min. The pressure difference inside and outside of the DE balloon is 700 Pa and the applying voltage is 6 kV. The voltage is applied to the DE balloon every other 3 min.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In