Dowell,
E. H.
,
Cox,
D.
,
Curtiss
,
H. C., Jr.
,
Edwards,
J. W.
,
Hall,
K. C.
,
Peters,
D. A.
,
Scanlan,
R. H.
,
Simiu,
E.
,
Sisto,
F.
, and
Strganac,
T. W.
, 2004, A Modern Course in Aeroelasticity,
Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Hodges,
D. H.
, and
Pierce,
G. A.
, 2011, Introduction to Structural Dynamics and Aeroelasticity, 2nd ed.,
Cambridge University Press,
New York.

[CrossRef]
Bisplinghoff,
R. L.
,
Ashley,
H.
, and
Halfman,
R. L.
, 1957, Aeroelasticity,
Addison-Wesley,
Reading, MA.

Hassig,
H. J.
, 1971, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration,” J. Aircr.,
8(11), pp. 885–889.

[CrossRef]
Haddadpour,
H.
, and
Firouz-Abadi,
R. D.
, 2009, “
True Damping and Frequency Prediction for Aeroelastic Systems: The PP Method,” J. Fluids Struct.,
25(7), pp. 1177–1188.

[CrossRef]
Namini,
A.
,
Albrecht,
P.
, and
Bosch,
H.
, 1992, “
Finite Element-Based Flutter Analysis of Cable-Suspended Bridges,” J. Struct. Eng.,
118(6), pp. 1509–1526.

[CrossRef]
Chen,
P. C.
, 2000, “
Damping Perturbation Method for Flutter Solution: The g-Method,” AIAA J.,
38(9), pp. 1519–1524.

[CrossRef]
Lind,
R.
, and
Brenner,
M.
, 1999, Robust Aeroservoelastic Stability Analysis,
Springer-Verlag,
London.

[CrossRef]
Lind,
R.
, 2002, “
Match-Point Solutions for Robust Flutter Analysis,” J. Aircr.,
39(1), pp. 91–99.

[CrossRef]
Borglund,
D.
, 2003, “
Robust Aeroelastic Stability Analysis Considering Frequency-Domain Aerodynamic Uncertainty,” J. Aircr.,
40(1), pp. 189–193.

[CrossRef]
Borglund,
D.
, 2004, “
The

*μ-*k Method for Robust Flutter Solutions,” J. Aircr.,
41(5), pp. 1209–1216.

[CrossRef]
Borglund,
D.
, 2005, “
Upper Bound Flutter Speed Estimation Using the

*μ-k* Method,” J. Aircr.,
42(2), pp. 555–557.

[CrossRef]
Borglund,
D.
, and
Ringertz,
U.
, 2006, “
Efficient Computation of Robust Flutter Boundaries Using the

*μ-k* Method,” J. Aircr.,
43(6), pp. 1763–1769.

[CrossRef]
Gu,
Y.
,
Yang,
Z.
,
Wang,
W.
, and
Xia,
W.
, 2009, “
Dynamic Pressure Perturbation Method for Flutter Solution: The Mu-Omega Method,” AIAA Paper No. 2009-2312.

Gu,
Y.
, and
Yang,
Z.
, 2010, “
Generalized Mu-Omega Method With Complex Perturbation to Dynamic Pressure,” AIAA Paper No. 2010-2799.

Borglund,
D.
, 2008, “
Robust Eigenvalue Analysis Using the Structured Singular Value: The μ-p Flutter Method,” AIAA J.,
46(11), pp. 2806–2813.

Afolabi,
D.
, 1994, “
Flutter Analysis Using Transversality Theory,” Acta Mech.,
103(1–4), pp. 1–15.

[CrossRef]
Afolabi,
D.
,
Pidaparti,
R. M. V.
, and
Yang,
H. T. Y.
, 1998, “
Flutter Prediction Using an Eigenvector Orientation Approach,” AIAA J.,
36(1), pp. 69–74.

[CrossRef]
Irani,
S.
, and
Sazesh,
S.
, 2013, “
A New Flutter Speed Analysis Method Using Stochastic Approach,” J. Fluids Struct.,
40, pp. 105–114.

[CrossRef]
Gu,
Y.
,
Zhang,
X.
, and
Yang,
Z.
, 2012, “
Robust Flutter Analysis Based on Genetic Algorithm,” Sci. China Technol. Sci.,
55(9), pp. 2474–2481.

[CrossRef]
Blythe,
P. W.
, and
Herszberg,
I. H.
, 1993, “
The Solution of Flutter Equations Using Neural Networks,” Fifth Australian Aeronautical Conference, Melbourne, Australia, Sept. 13–15.

Chen,
C. H.
, 2003, “
Determination of Flutter Derivatives Via a Neural Network Approach,” J. Sound Vib.,
263(4), pp. 797–813.

[CrossRef]
Chen,
C. H.
,
Wu,
J. C.
, and
Chen,
J. H.
, 2008, “
Prediction of Flutter Derivatives by Artificial Neural Networks,” J. Wind Eng. Ind. Aerodyn.,
96(10–11), pp. 1925–1937.

[CrossRef]
Natarajan,
A.
, 2002, “Aeroelasticity of Morphing Wings Using Neural Networks,” Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Meerbergen,
K.
,
Schröder,
C.
, and
Voss,
H.
, 2013, “
A Jacobi-Davidson Method for Two-Real-Parameter Nonlinear Eigenvalue Problems Arising From Delay-Differential Equations,” Numer. Linear Algebra Appl.,
20(5), pp. 852–868.

[CrossRef]
Meerbergen,
K.
, and
Spence,
A.
, 2010, “
Inverse Iteration for Purely Imaginary Eigenvalues With Application to the Detection of Hopf Bifurcations in Large-Scale Problems,” SIAM J. Matrix Anal. Appl.,
31(4), pp. 1982–1999.

[CrossRef]
Goland,
M.
, 1945, “
The Flutter of a Uniform Cantilever Wing,” ASME J. Appl. Mech.,
12(4), pp. A197–A208.

Pons,
A.
, 2015, “Aeroelastic Flutter as a Multiparameter Eigenvalue Problem,” Master's thesis, University of Canterbury, Christchurch, New Zealand.

Pons,
A.
, and
Gutschmidt,
S.
, 2017, “
Multiparameter Solution Methods for Semi-Structured Aeroelastic Flutter Problems,” AIAA J.,
55(10), pp. 3530–3538.

[CrossRef]
White,
F. M.
, 2009, Fluid Mechanics, 6th ed.,
McGraw-Hill,
New York.

Muhič,
A.
, and
Plestenjak,
B.
, 2010, “
On the Quadratic Two-Parameter Eigenvalue Problem and Its Linearization,” Linear Algebra Appl.,
432(10), pp. 2529–2542.

[CrossRef]
Hochstenbach,
M. E.
,
Muhič,
A.
, and
Plestenjak,
B.
, 2012, “
On Linearizations of the Quadratic Two-Parameter Eigenvalue Problem,” Linear Algebra Appl.,
436(8), pp. 2725–2743.

[CrossRef]
Tisseur,
F.
, and
Meerbergen,
K.
, 2001, “
The Quadratic Eigenvalue Problem,” SIAM Rev.,
43(2), pp. 235–286.

[CrossRef]
Hochstenbach,
M. E.
, and
Plestenjak,
B.
, 2002, “
A Jacobi-Davidson Type Method for a Right Definite Two-Parameter Eigenvalue Problem,” SIAM J. Matrix Anal. Appl.,
24(2), pp. 392–410.

[CrossRef]
Plestenjak,
B.
, 2001, “
A Continuation Method for a Weakly Elliptic Two-Parameter Eigenvalue Problem,” IMA J. Numer. Anal.,
21(1), pp. 199–216.

[CrossRef]
Quarteroni,
A.
,
Sacco,
R.
, and
Saleri,
F.
, 2007, Numerical Mathematics, 2nd ed.,
Springer-Verlag,
Berlin.

Cottin,
N.
, 2001, “
Dynamic Model Updating—A Multiparameter Eigenvalue Problem,” Mech. Syst. Signal Process.,
15(4), pp. 649–665.

[CrossRef]
Cottin,
N.
, and
Reetz,
J.
, 2006, “
Accuracy of Multiparameter Eigenvalues Used for Dynamic Model Updating With Measured Natural Frequencies Only,” Mech. Syst. Signal Process.,
20(1), pp. 65–77.

[CrossRef]
Muhič,
A.
, and
Plestenjak,
B.
, 2009, “
On the Singular Two-Parameter Eigenvalue Problem,” Electron. J. Linear Algebra,
18(1), pp. 420–437.

[CrossRef]
Hochstenbach,
M. E.
, and
Plestenjak,
B.
, 2003, “
Backward Error, Condition Numbers, and Pseudospectra for the Multiparameter Eigenvalue Problem,” Linear Algebra Appl.,
375, pp. 63–81.

[CrossRef]
Plestenjak,
B.
, and
Muhič,
A.
, 2015, “
MultiParEig 1.0,”
MATLAB File Exchange,
Ljubljana, Slovenia.

Košir,
T.
, 1994, “
Finite-Dimensional Multiparameter Spectral Theory: The Nonderogatory Case,” Linear Algebra Appl.,
212–213, pp. 45–70.

[CrossRef]
Binding,
B.
, and
Browne,
P. J.
, 1989, “
Two Parameter Eigenvalue Problems for Matrices,” Linear Algebra Appl.,
113, pp. 139–157.

[CrossRef]
Atkinson,
F. V.
, 1968, “
Multiparameter Spectral Theory,” Bull. Am. Math. Soc.,
74(1), pp. 1–28.

[CrossRef]
Atkinson,
F. V.
, 1972, Multiparameter Eigenvalue Problems: Matrices and Compact Operators,
Academic Press,
London.

Rynne,
B. P.
, 1988, “
Multiparameter Spectral Theory and Taylor's Joint Spectrum in Hilbert Space,” Proc. Edinburgh Math. Soc.,
31(1), p. 127.

[CrossRef]
Anton,
H.
, 1977, Elementary Linear Algebra, 2nd ed.,
Wiley,
New York.

Eiselt,
H. A.
, and
Sandblom,
C. L.
, 2007, Linear Programming and Its Applications,
Springer-Verlag,
Berlin.

[PubMed] [PubMed]
Trefethen,
L. N.
, and
Bau,
D.
, 1997, Numerical Linear Algebra,
Society for Industrial and Applied Mathematics,
Philadelphia, PA.

[CrossRef]
Trefethen,
L. N.
, 1992, Pseudospectra of Matrices, Numerical Analysis 1991,
D. F. Griffiths
, and
G. A. Watson
, eds.,
Longman Scientific and Technical,
Harlow, Essex, UK, pp. 234–266.

Murthy,
D. V.
, and
Kaza,
K. R. V.
, 1987, “
A Computational Procedure for Automated Flutter Analysis,”
NASA Lewis Research Center,
Cleveland, OH, Report No. 100171.

Podlevskyi,
B. M.
, 2008, “
Newton's Method as a Tool for Finding the Eigenvalues of Certain Two-Parameter (Multiparameter) Spectral Problems,” Comput. Math. Math. Phys.,
48(12), pp. 2140–2145.

[CrossRef]
Podlevskyi,
B. M.
, 2010, “
Numerical Solution of Some Two-Parameter Eigenvalue Problems,” J. Math. Sci.,
165(2), pp. 214–220.

[CrossRef]
Pons,
A.
, and
Gutschmidt,
S.
, 2016, “
Aeroelastic Flutter of Continuous Systems: A Generalized Laplace Transform Method,” ASME J. Appl. Mech.,
83(8), p. 081005.

[CrossRef]