Research Papers

Buckling of Multilayer Graphene Sheets Subjected to Axial Compression Based on a Continuum Mechanics Model

[+] Author and Article Information
Moonhong Kim

Department of Mechanical Engineering,
Korea Advanced Institute of Science
and Technology (KAIST),
291 Daehak-ro, Yuseong-gu,
Daejeon 34141, South Korea

Seyoung Im

Department of Mechanical Engineering,
Korea Advanced Institute of Science
and Technology (KAIST),
291 Daehak-ro, Yuseong-gu,
Daejeon 34141, South Korea
e-mail: sim@kaist.ac.kr

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received January 4, 2018; final manuscript received February 26, 2018; published online March 20, 2018. Assoc. Editor: Yihui Zhang.

J. Appl. Mech 85(6), 061002 (Mar 20, 2018) (10 pages) Paper No: JAM-18-1008; doi: 10.1115/1.4039457 History: Received January 04, 2018; Revised February 26, 2018

Buckling of multilayer graphene sheets (MLGSs) subjected to an axial compressive load in plane-strain condition is studied. Closed-form solutions for buckling load of MLGSs are obtained based on a continuum model for MLGSs. Two different kinematic assumptions, which lead to MLGS beam, which was recently proposed by the authors, and the Euler beam, are used to obtain the buckling loads. The obtained solutions yield significantly different buckling loads when the axial length is small. To validate obtained results, molecular dynamics (MD) simulations are conducted, and they show that the MLGS beam model well captures the buckling load of MLGSs. The buckling solution of MLGS beam model provides two interesting facts. First, the buckling load of MLGSs coincides with the Euler buckling load when the length is large. Second, when the number of layers is large, the buckling strain converges to a finite value, and could be expressed as a linear combination of the buckling strain of single-layer graphene and the ratio between the shear rigidity of interlayer and the tensile rigidity of graphene layer. We validate the asymptotic behavior of buckling strain through MD simulations and show that buckling occurs even when the overall thickness is larger than the axial length. Finally, we present a diagram that contains buckling strain of MLGSs according to the boundary conditions, the number of layers, and the axial length.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Novoselov, K. S. , Geim, A. K. , Morozov, S. V. , Jiang, D. , Zhang, Y. , Dubonos, S. V. , Grigorieva, I. V. , and Firsov, A. A. , 2004, “ Electric Field Effect in Atomically Thin Carbon Films,” Science, 306(5696), pp. 666–669. [CrossRef] [PubMed]
Xu, M. , Liang, T. , Shi, M. , and Chen, H. , 2013, “ Graphene-Like Two-Dimensional Materials,” Chem. Rev., 113(5), pp. 3766–3798. [CrossRef] [PubMed]
Ashton, M. , Paul, J. , Sinnott, S. B. , and Hennig, R. G. , 2017, “ Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett., 118(10), p. 106101. [CrossRef] [PubMed]
Morpurgo, A. F. , 2015, “ Ten Years of Nature Physics: The ABC of 2D Materials,” Nat. Phys., 11(8), p. 625. [CrossRef]
Lee, J.-H. , Loya, P. E. , Lou, J. , and Thomas, E. L. , 2014, “ Dynamic Mechanical Behavior of Multilayer Graphene Via Supersonic Projectile Penetration,” Science, 346(6213), pp. 1092–1096. [CrossRef] [PubMed]
Lui, C. H. , Malard, L. M. , Kim, S. , Lantz, G. , Laverge, F. E. , Saito, R. , and Heinz, T. F. , 2012, “ Observation of Layer-Breathing Mode Vibrations in Few-Layer Graphene Through Combination Raman Scattering,” Nano Lett., 12(11), pp. 5539–5544. [CrossRef] [PubMed]
Zhou, L. , Wang, Y. , and Cao, G. , 2013, “ Estimating the Elastic Properties of Few-Layer Graphene From the Free-Standing Indentation Response,” J. Phys.: Condens. Matter, 25(47), p. 475301. [CrossRef] [PubMed]
Shahil, K. M. , and Balandin, A. A. , 2012, “ Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials,” Solid State Commun., 152(15), pp. 1331–1340. [CrossRef]
Shen, X. , Wang, Z. , Wu, Y. , Liu, X. , He, Y.-B. , and Kim, J.-K. , 2016, “ Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites,” Nano Lett., 16(6), pp. 3585–3593. [CrossRef] [PubMed]
Ghosh, S. , Bao, W. , Nika, D. L. , Subrina, S. , Pokatilov, E. P. , Lau, C. N. , and Balandin, A. A. , 2010, “ Dimensional Crossover of Thermal Transport in Few-Layer Graphene Materials,” preprint arXiv:1003.5247. https://arxiv.org/abs/1003.5247
Rodrigo, D. , Tittl, A. , Limaj, O. , De Abajo, F. J. G. , Pruneri, V. , and Altug, H. , 2017, “ Double-Layer Graphene for Enhanced Tunable Infrared Plasmonics,” Light: Sci. Appl., 6(6), p. e16277.
Bao, W. , Jing, L. , Velasco, J. , Lee, Y. , Liu, G. , Tran, D. , Standley, B. , Aykol, M. , Cronin, S. B. , Smirnov, D. , Koshino, M. , McCann, E. , Bockrath, M. , and Lau, C. N. , 2011, “ Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene,” Nat. Phys., 7(12), pp. 948–952. [CrossRef]
Wu, J.-B. , Zhang, X. , Ijäs, M. , Han, W.-P. , Qiao, X.-F. , Li, X.-L. , Jiang, D.-S. , Ferrari, A. C. , and Tan, P.-H. , 2014, “ Resonant Raman Spectroscopy of Twisted Multilayer Graphene,” Nat. Commun., 5, p. 5309. [CrossRef] [PubMed]
Ho, Y. , Wu, J. , Chiu, Y. , Wang, J. , and Lin, M. , 2010, “ Electronic and Optical Properties of Monolayer and Bilayer Graphene,” Philos. Trans. R. Soc. London A, 368(1932), pp. 5445–5458. [CrossRef]
Ji, Y. , Lee, S. , Cho, B. , Song, S. , and Lee, T. , 2011, “ Flexible Organic Memory Devices With Multilayer Graphene Electrodes,” ACS Nano, 5(7), pp. 5995–6000. [CrossRef] [PubMed]
Choi, Y.-Y. , Kang, S. J. , Kim, H.-K. , Choi, W. M. , and Na, S.-I. , 2012, “ Multilayer Graphene Films as Transparent Electrodes for Organic Photovoltaic Devices,” Sol. Energy Mater. Sol. Cells, 96, pp. 281–285. [CrossRef]
Ghosh, R. , Singh, A. , Santra, S. , Ray, S. K. , Chandra, A. , and Guha, P. K. , 2014, “ Highly Sensitive Large-Area Multi-Layered Graphene-Based Flexible Ammonia Sensor,” Sens. Actuators B, 205, pp. 67–73. [CrossRef]
Todorović, D. , Matković, A. , Milićević, M. , Jovanović, D. , Gajić, R. , Salom, I. , and Spasenović, M. , 2015, “ Multilayer Graphene Condenser Microphone,” 2D Mater., 2(4), p. 045013. [CrossRef]
Dissanayake, D. , Ashraf, A. , Dwyer, D. , Kisslinger, K. , Zhang, L. , Pang, Y. , Efstathiadis, H. , and Eisaman, M. , 2016, “ Spontaneous and Strong Multi-Layer Graphene n-Doping on Soda-Lime Glass and Its Application in Graphene-Semiconductor Junctions,” Sci. Rep., 6(1), p. 21070. [CrossRef] [PubMed]
Weber, P. , Güttinger, J. , Noury, A. , Vergara-Cruz, J. , and Bachtold, A. , 2016, “ Force Sensitivity of Multilayer Graphene Optomechanical Devices,” Nat. Commun., 7, p. 12496.
Pereira, V. M. , and Neto, A. C. , 2009, “ Strain Engineering of Graphene's Electronic Structure,” Phys. Rev. Lett., 103(4), p. 046801. [CrossRef] [PubMed]
Sedelnikova, O. , Bulusheva, L. , and Okotrub, A. , 2011, “ Ab Initio Study of Dielectric Response of Rippled Graphene,” J. Chem. Phys., 134(24), p. 244707. [CrossRef] [PubMed]
Guinea, F. , Horovitz, B. , and Le Doussal, P. , 2008, “ Gauge Field Induced by Ripples in Graphene,” Phys. Rev. B, 77(20), p. 205421. [CrossRef]
Isacsson, A. , Jonsson, L. M. , Kinaret, J. M. , and Jonson, M. , 2008, “ Electronic Superlattices in Corrugated Graphene,” Phys. Rev. B, 77(3), p. 035423. [CrossRef]
Tsoukleri, G. , Parthenios, J. , Papagelis, K. , Jalil, R. , Ferrari, A. C. , Geim, A. K. , Novoselov, K. S. , and Galiotis, C. , 2009, “ Subjecting a Graphene Monolayer to Tension and Compression,” Small, 5(21), pp. 2397–2402. [CrossRef] [PubMed]
Frank, O. , Tsoukleri, G. , Parthenios, J. , Papagelis, K. , Riaz, I. , Jalil, R. , Novoselov, K. S. , and Galiotis, C. , 2010, “ Compression Behavior of Single-Layer Graphenes,” ACS Nano, 4(6), pp. 3131–3138. [CrossRef] [PubMed]
Sakhaee-Pour, A. , 2009, “ Elastic Buckling of Single-Layered Graphene Sheet,” Comput. Mater. Sci., 45(2), pp. 266–270. [CrossRef]
Lu, Q. , and Huang, R. , 2009, “ Nonlinear Mechanics of Single-Atomic-Layer Graphene Sheets,” Int. J. Appl. Mech., 1(3), pp. 443–467. [CrossRef]
Neek-Amal, M. , and Peeters, F. , 2010, “ Graphene Nanoribbons Subjected to Axial Stress,” Phys. Rev. B, 82(8), p. 085432. [CrossRef]
Zhang, Y. , and Liu, F. , 2011, “ Maximum Asymmetry in Strain Induced Mechanical Instability of Graphene: Compression Versus Tension,” Appl. Phys. Lett., 99(24), p. 241908. [CrossRef]
Zhang, H.-Y. , Jiang, J.-W. , Chang, T. , Guo, X. , and Park, H. S. , 2016, “ The Effects of Free Edge Interaction-Induced Knotting on the Buckling of Monolayer Graphene,” Int. J. Solids Struct., 100–101, pp. 446–455. [CrossRef]
Pradhan, S. , and Murmu, T. , 2009, “ Small Scale Effect on the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics,” Comput. Mater. Sci., 47(1), pp. 268–274. [CrossRef]
Pilafkan, R. , Irzarahimi, M. K. , and Namin, S. A. , 2017, “ Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation,” World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 11(4), pp. 301–306. http://scholar.waset.org/1307-6892/10006878
Sahmani, S. , and Fattahi, A. , 2018, “ Development of Efficient Size-Dependent Plate Models for Axial Buckling of Single-Layered Graphene Nanosheets Using Molecular Dynamics Simulation,” Microsyst. Technol., 24(2), pp. 1265–1277. [CrossRef]
Soleimani, A. , Naei, M. H. , and Mashhadi, M. M. , 2017, “ Buckling Analysis of Graphene Sheets Using Nonlocal Isogeometric Finite Element Method for NEMS Applications,” Microsyst. Technol., 23(7), pp. 2859–2871. [CrossRef]
Chandra, Y. , Chowdhury, R. , Adhikari, S. , and Scarpa, F. , 2011, “ Elastic Instability of Bilayer Graphene Using Atomistic Finite Element,” Physica E, 44(1), pp. 12–16. [CrossRef]
Shi, J.-X. , Ni, Q.-Q. , Lei, X.-W. , and Natsuki, T. , 2011, “ Nonlocal Elasticity Theory for the Buckling of Double-Layer Graphene Nanoribbons Based on a Continuum Model,” Comput. Mater. Sci., 50(11), pp. 3085–3090. [CrossRef]
Sgouros, A. , Kalosakas, G. , Galiotis, C. , and Papagelis, K. , 2016, “ Uniaxial Compression of Suspended Single and Multilayer Graphenes,” 2D Mater., 3(2), p. 25033. [CrossRef]
Jandaghian, A. , and Rahmani, O. , 2017, “ Buckling Analysis of Multi-Layered Graphene Sheets Based on a Continuum Mechanics Model,” Appl. Phys. A, 123(5), p. 324. [CrossRef]
Ren, M. , Liu, Y. , Liu, J. Z. , Wang, L. , and Zheng, Q. , 2016, “ Anomalous Elastic Buckling of Layered Crystalline Materials in the Absence of Structure Slenderness,” J. Mech. Phys. Solids, 88, pp. 83–99. [CrossRef]
Kim, M. , and Im, S. , 2017, “ A Plate Model for Multilayer Graphene Sheets and Its Finite Element Implementation Via Corotational Formulation,” Comput. Methods Appl. Mech. Eng., 325, pp. 102–138. [CrossRef]
Liu, Y. , Xu, Z. , and Zheng, Q. , 2011, “ The Interlayer Shear Effect on Graphene Multilayer Resonators,” J. Mech. Phys. Solids, 59(8), pp. 1613–1622. [CrossRef]
Kelly, B. , 1981, Physics of Graphite, Applied Science Publishers, London.
Jiang, H. , Khang, D.-Y. , Song, J. , Sun, Y. , Huang, Y. , and Rogers, J. A. , 2007, “ Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports,” Proc. Natl. Acad. Sci., 104(40), pp. 15607–15612. [CrossRef]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Stuart, S. J. , Tutein, A. B. , and Harrison, J. A. , 2000, “ A Reactive Potential for Hydrocarbons With Intermolecular Interactions,” J. Chem. Phys., 112(14), pp. 6472–6486. [CrossRef]
Shield, R. , and Im, S. , 1986, “ Small Strain Deformations of Elastic Beams and Rods Including Large Deflections,” Z. Angew. Math. Phys., 37(4), pp. 491–513. [CrossRef]
Bathe, K.-J. , 2006, Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ, pp. 630–636.


Grahic Jump Location
Fig. 1

(a) The atomistic model of MLGSs at the undeformed configuration and (b) a continuum model for MLGSs in plane-strain at the undeformed configuration

Grahic Jump Location
Fig. 2

Kinematics of proposed MLGS beam model in plane-strain: (a) at the undeformed configuration and (b) at a deformed configuration

Grahic Jump Location
Fig. 3

Free body diagram of buckled state of MLGSs

Grahic Jump Location
Fig. 4

Normalized buckling loads obtained from analytical solutions for two different kinematic models when both ends are clamped and N = 2

Grahic Jump Location
Fig. 5

Specimens for MD simulation of buckling of MLGSs: (a) at the undeformed configuration and (b) at a deformed configuration. The axial direction coincides with the armchair direction, N = 2, and L = 6.07 nm.

Grahic Jump Location
Fig. 6

Normalized load versus normalized strain curve obtained by using MD when both ends are clamped and subjected to compression (N = 2 and L = 6.07 nm)

Grahic Jump Location
Fig. 7

Normalized buckling loads of MLGSs obtained from the analytical solution and MD simulations according to the normalized length of beam and the number of layers

Grahic Jump Location
Fig. 8

Critical buckling strain according to the number of layers. The axial length is 3.98 nm, and both ends are subjected to the clamped condition.

Grahic Jump Location
Fig. 9

The buckled configuration of MLGSs having high thickness length ratio when ε=5εc, N = 15, L = 3.98 nm, and both ends are clamped

Grahic Jump Location
Fig. 10

Buckling mode shapes of MLGSs according to boundary conditions: (a) both ends pinned-end, (b) one end free and the other clamped, and (c) both clamped

Grahic Jump Location
Fig. 11

Critical buckling strains of MLGSs according to the boundary conditions, the number of layer, and the length

Grahic Jump Location
Fig. 12

Kinematics of the Euler beam model for MLGSs in plane strain at a deformed configuration



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In