0
Design Innovation Paper

Mechanics Design of Stretchable Near Field Communication Antenna With Serpentine Wires

[+] Author and Article Information
Zhaoqian Xie

Department of Civil and Environmental Engineering,
Northwestern University,
Evanston, IL 60208;
AML,
Department of Engineering Mechanics,
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China
e-mail: xiezhaoqian@gmail.com

Bowen Ji

Department of Micro/Nano Electronics,
Shanghai Jiao Tong University,
Shanghai 200240, China;
Department of Civil and Environmental Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: jibowen2015@sjtu.edu.cn

Qingze Huo

Department of Mechanical Engineering,
Northwestern University,
Evanston, IL 60208
e-mail: qingzehuo2018@u.northwestern.edu

1Corresponding author.

Manuscript received November 18, 2017; final manuscript received January 22, 2018; published online February 9, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(4), 045001 (Feb 09, 2018) (4 pages) Paper No: JAM-17-1645; doi: 10.1115/1.4039102 History: Received November 18, 2017; Revised January 22, 2018

Recent advances in materials, mechanics, and electronics manufacturing are establishing the foundations for health/wellness monitoring technologies that have “skin-like” properties, with options in long-term integration with the epidermis. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The note reported here introduces a foundational mechanics design strategy of stretchable near field communication (NFC) antenna with serpentine microstructures to achieve wireless, battery-free transmission of power and/or data, where the planar layout, polyimide (PI) layer thickness of the serpentine wire, and composite substrate are designed to achieve larger elastic stretchability.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rogers, J. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Wagner, S. , and Bauer, S. , 2012, “ Materials for Stretchable Electronics,” MRS Bull., 37(3), pp. 207–213. [CrossRef]
Sekitani, T. , and Someya, T. , 2012, “ Stretchable Electronics,” Nippon Gomu Kyokaishi, 85(3), pp. 101–106. [CrossRef]
Xu, S. , Zhang, Y. H. , Jia, L. , Mathewson, K. E. , Jang, K. I. , Kim, J. , Fu, H. R. , Huang, X. , Chava, P. , Wang, R. H. , Bhole, S. , Wang, L. Z. , Na, Y. J. , Guan, Y. , Flavin, M. , Han, Z. S. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin,” Science, 344(6179), pp. 70–74. [CrossRef] [PubMed]
Ma, Q. , and Zhang, Y. , 2016, “ Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics,” ASME J. Appl. Mech., 83(11), p. 111008.
Kim, D. H. , Lu, N. S. , Ma, R. , Kim, Y. S. , Kim, R. H. , Wang, S. D. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. Z. , Li, M. , Chung, H. J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. G. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Kim, J. , Salvatore, G. , Araki, H. , Chiarelli, A. , Xie, Z. , Banks, A. , Sheng, X. , Liu, Y. , Lee, J. W. , Jang, K. I. , Heo, S. , Cho, K. , Luo, H. , Zimmerman, B. , Yan, L. , Feng, X. , Xu, S. , Fabiani, M. , Gratton, G. , Huang, Y. , Paik, U. , and Rogers, J. , 2016, “ Battery-Free, Stretchable Optoelectronic Systems for Wireless Optical Characterization of the Skin,” Sci. Adv., 2(8), p. e1600418.
Martin, K. , Tsuyoshi, S. , Jonathan, R. , Tomoyuki, Y. , Kazunori, K. , Takeyoshi, T. , Michael, D. , Reinhard, S. , Ingrid, G. , Simona, B.-G. , Siegfried, B. , and Takao, S. , 2013, “ An Ultra-Lightweight Design for Imperceptible Plastic Electronics,” Nature, 499(7459), pp. 458–463. [CrossRef] [PubMed]
Lizhi, X. , Sarah, R. G. , Andrew, P. B. , Yewang, S. , Matthew, S. S. , Nanshu, L. , Hyun-Joong, C. , Kyung-In, J. , Zhuangjian, L. , Ming, Y. , Chi, L. , Webb, R. C. , Jong-Seon, K. , Jacob, I. L. , Huanyu, C. , Yuhao, L. , Abid, A. , Jae-Woong, J. , Gwang-Tae, K. , Yonggang, H. , Igor, R. E. , and John, A. R. , 2014, “ 3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium,” Nat. Commun., 5, p. 3329.
Dae-Hyeong, K. , Viventi, J. , Amsden, J. J. , Jianliang, X. , Vigeland, L. , Yun-Soung, K. , Blanco, J. A. , Panilaitis, B. , Frechette, E. S. , Contreras, D. , Kaplan, D. L. , Omenetto, F. G. , Yonggang, H. , Keh-Chih, H. , Zakin, M. R. , Litt, B. , and Rogers, J. A. , 2010, “ Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nat. Mater., 9(6), pp. 511–517. [CrossRef] [PubMed]
Webb, R. C. , Ma, Y. , Krishnan, S. , Li, Y. , Yoon, S. , Guo, X. , Feng, X. , Shi, Y. , Seidel, M. , Cho, N. H. , Kurniawan, J. , Ahad, J. , Sheth, N. , Kim, J. , Taylor Vi, J. G. , Darlington, T. , Chang, K. , Huang, W. , Ayers, J. , Gruebele, A. , Pielak, R. M. , Slepian, M. J. , Huang, Y. , Gorbach, A. M. , and Rogers, J. A. , 2015, “ Epidermal Devices for Noninvasive, Precise, and Continuous Mapping of Macrovascular and Microvascular Blood Flow,” Sci. Adv., 1(9), p. e1500701.
Webb, R. C. , Bonifas, A. P. , Behnaz, A. , Zhang, Y. H. , Yu, K. J. , Cheng, H. Y. , Shi, M. X. , Bian, Z. G. , Liu, Z. J. , Kim, Y. S. , Yeo, W. H. , Park, J. S. , Song, J. Z. , Li, Y. H. , Huang, Y. G. , Gorbach, A. M. , and Rogers, J. A. , 2013, “ Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin,” Nat. Mater., 12(11), pp. 938–944. [CrossRef] [PubMed]
Dagdeviren, C. , Shi, Y. , Joe, P. , Ghaffari, R. , Balooch, G. , Usgaonkar, K. , Gur, O. , Tran, P. L. , Crosby, J. R. , Meyer, M. , Su, Y. , Chad Webb, A. S. , Tedesco, M. J. , Slepian, Y. , Huang, J. A. , and Rogers, J. A. , 2015, “ Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics,” Nat. Mater., 14(7), pp. 728–736.
Kim, J. , Banks, A. , Cheng, H. , Xie, Z. , Xu, S. , Jang, K. I. , Lee, J. W. , Liu, Z. , Gutruf, P. , Huang, X. , Wei, P. , Liu, F. , Li, K. , Dalal, M. , Ghaffari, R. , Feng, X. , Huang, Y. , Gupta, S. , Paik, U. , and Rogers, J. A. , 2015, “ Epidermal Electronics With Advanced Capabilities in Near‐Field Communication,” Small, 11(8), pp. 906–912. [CrossRef] [PubMed]
Kim, J. , Banks, A. , Xie, Z. , Heo, S. Y. , Gutruf, P. , Lee, J. W. , Xu, S. , Jang, K. I. , Liu, F. , Brown, G. , Choi, J. , Kim, J. H. , Feng, X. , Huang, Y. , Paik, U. , and Rogers, J. A. , 2015, “ Miniaturized Flexible Electronic Systems With Wireless Power and Near‐Field Communication Capabilities,” Adv. Funct. Mater., 25(30), pp. 4761–4767. [CrossRef]
Rose, D. P. , Ratterman, M. E. , Griffin, D. K. , Hou, L. , Kelley-Loughnane, N. , Naik, R. R. , Hagen, J. A. , Papautsky, I. , and Heikenfeld, J. C. , 2015, “ Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes,” IEEE Trans. Biomed. Eng., 62(6), pp. 1457–1465. [CrossRef] [PubMed]
Zhang, Y. , Wang, S. , Li, X. , Fan, J. A. , Xu, S. , Song, Y. M. , Choi, K. J. , Yeo, W. H. , Lee, W. , Nazaar, S. N. , Lu, B. , Yin, L. , Hwang, K. C. , Rogers, J. A. , and Huang, Y. , 2014, “ Experimental and Theoretical Studies of Serpentine Microstructures Bonded to Prestrained Elastomers for Stretchable Electronics,” Adv. Funct. Mater., 24(14), pp. 2028–2037. [CrossRef]
Zhang, M. , Liu, H. , Cao, P. , Chen, B. , Hu, J. , Chen, Y. , Pan, B. , Fan, J. A. , Li, R. , Zhang, L. , and Su, Y. , 2017, “ Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics,” ASME J. Appl. Mech., 84(12), p. 121010. [CrossRef]
Raayai-Ardakani, S. , Yague, J. L. , Gleason, K. K. , and Boyce, M. C. , 2016, “ Mechanics of Graded Wrinkling,” ASME J. Appl. Mech., 83(12), p. 121011.
Wang, B. , Ghanta, P. , Vinnikova, S. , Bao, S. , Liang, J. , Lu, H. , and Wang, S. , 2017, “ Wrinkling of Tympanic Membrane Under Unbalanced Pressure,” ASME J. Appl. Mech., 84(4), p. 041002.
Liu, Y. , Li, M. , Liu, J. , and Chen, X. , 2017, “ Mechanism of Surface Wrinkle Modulation for a Stiff Film on Compliant Substrate,” ASME J. Appl. Mech., 84(5), p. 051011.
Yang, S. , Qiao, S. , and Lu, N. , 2017, “ Elasticity Solutions to Nonbuckling Serpentine Ribbons,” ASME J. Appl. Mech., 84(2), p. 021004.
Davis, J. R. , 2001, Copper and Copper Alloys, ASM International, Materials Park, OH.
Ní Annaidh, A. , Bruyère, K. , Destrade, M. , Gilchrist, M. D. , and Otténio, M. , 2011, “ Characterization of the Anisotropic Mechanical Properties of Excised Human Skin,” J. Mech. Behav. Biomed. Mater., 5(1), pp. 139–148.
Dellon, E. S. , Mourey, R. , and Dellon, A. L. , 1992, “ Human Pressure Perception Values for Constant and Moving One- and Two-Point Discrimination,” Plast. Reconstr. Surg., 90(1), pp. 112–117. [CrossRef] [PubMed]
Kaneko, A. , Asai, N. , and Kanda, T. , 2005, “ The Influence of Age on Pressure Perception of Static and Moving Two-Point Discrimination in Normal Subjects,” J. Hand Ther., 18(4), pp. 421–425. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 4

(a) Top view and side view of undeformed antenna mounted on skin with 2 mm thickness, (b) distribution of maximum principal strain in the Cu layer under 40% uniaxial stretching, (c) resonant frequency versus uniaxial strain, and (d) distribution of the normal and shear stresses on the skin under 40% uniaxial stretching

Grahic Jump Location
Fig. 3

(a) Cross-sectional view of the serpentine wire with the composite substrate and (b) the elastic stretchability of the serpentine wire with the composite substrate

Grahic Jump Location
Fig. 2

(a) The serpentine wire with substrate is mounted on the skin under uniaxial stretching, (b) the elastic stretchability of the serpentine wire with Ecoflex substrate, and (c) the strain distribution of stretched serpentine wires with different PI thicknesses (tPI = 1 μm, 4 μm, and 8 μm) and wire radius R = 250 μm

Grahic Jump Location
Fig. 1

(a) Exploded-view schematic illustrations of each layer and top view of the stretchable NFC device, (b) top view of the serpentine wire, and (c) cross-sectional view of the serpentine wire

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In