Cocchetti,
G.
,
Pagani,
M.
, and
Perego,
U.
, 2013, “
Selective Mass Scaling and Critical Time-Step Estimate for Explicit Dynamics Analyses With Solid-Shell Elements,” Comput. Struct.,
127, pp. 39–52.

[CrossRef]
Noh,
G.
, and
Bathe,
K.-J.
, 2013, “
An Explicit Time Integration Scheme for the Analysis of Wave Propagations,” Comput. Struct.,
129, pp. 178–193.

[CrossRef]
Frias,
G. J. D.
,
Aquino,
W.
,
Pierson,
K. H.
,
Heinstein,
M. W.
, and
Spencer,
B. W.
, 2014, “
A Multiscale Mass Scaling Approach for Explicit Time Integration Using Proper Orthogonal Decomposition,” Int. J. Numer. Methods Eng.,
97(11), pp. 799–818.

[CrossRef]
Gao,
L.
, and
Calo,
V. M.
, 2014, “
Fast Isogeometric Solvers for Explicit Dynamics,” Comput. Methods Appl. Mech. Eng.,
274, pp. 19–41.

[CrossRef]
Chang,
S.-Y.
, 2010, “
A New Family of Explicit Methods for Linear Structural Dynamics,” Comput. Struct.,
88(11–12), pp. 755–772.

[CrossRef]
Jia,
J.
, 2014, Essentials of Applied Dynamic Analysis (Risk Engineering),
Springer,
Berlin.

[CrossRef]
Olovsson,
L.
,
Simonsson,
K.
, and
Unosson,
M.
, 2005, “
Selective Mass Scaling for Explicit Finite Element Analyses,” Int. J. Numer. Methods Eng.,
63(10), pp. 1436–1445.

[CrossRef]
Ducobu,
F.
,
Rivière-Lorphèvre,
E.
, and
Filippi,
E.
, 2015, “
On the Introduction of Adaptive Mass Scaling in a Finite Element Model of ti6al4v Orthogonal Cutting,” Simul. Modell. Pract. Theory,
53, pp. 1–14.

[CrossRef]
Paz,
M.
, 1984, “
Dynamic Condensation,” AIAA J.,
22(5), pp. 724–727.

[CrossRef]
Xiao,
M.
,
Breitkopf,
P.
,
Coelho,
R. F.
,
Villon,
P.
, and
Zhang,
W.
, 2014, “
Proper Orthogonal Decomposition With High Number of Linear Constraints for Aerodynamical Shape Optimization,” Appl. Math. Comput.,
247, pp. 1096–1112.

Behzad,
F.
,
Helenbrook,
B. T.
, and
Ahmadi,
G.
, 2015, “
On the Sensitivity and Accuracy of Proper-Orthogonal-Decomposition-Based Reduced Order Models for Burgers Equation,” Comput. Fluids,
106, pp. 19–32.

[CrossRef]
Chen,
H.
,
Xu,
M.
,
Hung,
D. L.
, and
Zhuang,
H.
, 2014, “
Cycle-to-Cycle Variation Analysis of Early Flame Propagation in Engine Cylinder Using Proper Orthogonal Decomposition,” Exp. Therm. Fluid Sci.,
58, pp. 48–55.

[CrossRef]
Troshin,
V.
,
Seifert,
A.
,
Sidilkover,
D.
, and
Tadmor,
G.
, 2016, “
Proper Orthogonal Decomposition of Flow-Field in Non-Stationary Geometry,” J. Comput. Phys.,
311, pp. 329–337.

[CrossRef]
Li,
X.
,
Chen,
X.
,
Hu,
B. X.
, and
Navon,
I. M.
, 2013, “
Model Reduction of a Coupled Numerical Model Using Proper Orthogonal Decomposition,” J. Hydrol.,
507, pp. 227–240.

[CrossRef]
Mahapatra,
P. S.
,
Chatterjee,
S.
,
Mukhopadhyay,
A.
,
Manna,
N. K.
, and
Ghosh,
K.
, 2016, “
Proper Orthogonal Decomposition of Thermally-Induced Flow Structure in an Enclosure With Alternately Active Localized Heat Sources,” Int. J. Heat Mass Transfer,
94, pp. 373–379.

[CrossRef]
Corigliano,
A.
,
Dossi,
M.
, and
Mariani,
S.
, 2015, “
Model Order Reduction and Domain Decomposition Strategies for the Solution of the Dynamic Elastic-Plastic Structural Problem,” Comput. Methods Appl. Mech. Eng.,
290, pp. 127–155.

[CrossRef]
Mariani,
R.
, and
Dessi,
D.
, 2012, “
Analysis of the Global Bending Modes of a Floating Structure Using the Proper Orthogonal Decomposition,” J. Fluids Struct.,
28, pp. 115–134.

[CrossRef]
Azam,
S. E.
, and
Mariani,
S.
, 2013, “
Investigation of Computational and Accuracy Issues in Pod-Based Reduced Order Modeling of Dynamic Structural Systems,” Eng. Struct.,
54, pp. 150–167.

[CrossRef]
Aubry,
N.
, 1991, “
On the Hidden Beauty of the Proper Orthogonal Decomposition,” Theor. Comput. Fluid Dyn.,
2(5), pp. 339–352.

[CrossRef]Berkooz, G., Holmes, P., and Lumley, J. L., 1993, “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Annu. Rev. Fluid Mech., **25**(1), pp. 539–575.

Kunisch,
K.
, and
Volkwein,
S.
, 1999, “
Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition,” J. Optim. Theory Appl.,
102(2), pp. 345–371.

[CrossRef]
Kerfriden,
P.
,
Goury,
O.
,
Rabczuk,
T.
, and
Bordas,
S.
, 2013, “
A Partitioned Model Order Reduction Approach to Rationalise Computational Expenses in Nonlinear Fracture Mechanics,” Comput. Methods Appl. Mech. Eng.,
256, pp. 169–188.

[CrossRef] [PubMed]
Radermacher,
A.
, and
Reese,
S.
, 2016, “
POD-Based Model Reduction With Empirical Interpolation Applied to Nonlinear Elasticity,” Int. J. Numer. Methods Eng.,
107(6), pp. 477–495.

[CrossRef]
Rapún,
M.-L.
,
Terragni,
F.
, and
Vega,
J. M.
, 2015, “
Adaptive Pod-Based Low-Dimensional Modeling Supported by Residual Estimates,” Int. J. Numer. Methods Eng.,
104(9), pp. 844–868.

[CrossRef]
Wang,
Z.
,
McBee,
B.
, and
Iliescu,
T.
, 2016, “
Approximate Partitioned Method of Snapshots for POD,” J. Comput. Appl. Math.,
307, pp. 374–384.

[CrossRef]
Peng,
L.
, and
Mohseni,
K.
, 2016, “
Nonlinear Model Reduction Via a Locally Weighted POD Method,” Int. J. Numer. Methods Eng.,
106(5), pp. 372–396.

[CrossRef]
Cusatis,
G.
,
Pelessone,
D.
, and
Mencarelli,
A.
, 2011, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory,” Cem. Concrete Compos.,
33(9), pp. 881–890.

[CrossRef]
Smith,
J.
,
Cusatis,
G.
,
Pelessone,
D.
,
Landis,
E.
,
O'Daniel,
J.
, and
Baylot,
J.
, 2014, “
Discrete Modeling of Ultra-High-Performance Concrete With Application to Projectile Penetration,” Int. J. Impact Eng.,
65, pp. 13–32.

[CrossRef]
Wan,
L.
,
Wendner,
R.
, and
Cusatis,
G.
, 2016, “
A Novel Material for In Situ Construction on Mars: Experiments and Numerical Simulations,” Constr. Build. Mater.,
120, pp. 222–231.

[CrossRef]
Wan,
L.
,
Wendner,
R.
,
Liang,
B.
, and
Cusatis,
G.
, 2016, “
Analysis of the Behavior of Ultra High Performance Concrete at Early Age,” Cem. Concr. Compos.,
74, pp. 120–135.

[CrossRef]
Li,
W.
,
Rezakhani,
R.
,
Jin,
C.
,
Zhou,
X.
, and
Cusatis,
G.
, 2017, “
A Multiscale Framework for the Simulation of the Anisotropic Mechanical Behavior of Shale,” Int. J. Numer. Anal. Methods Geomech., **41**(14), pp. 1494–1522.

Cusatis,
G.
, and
Zhou,
X.
, 2014, “
High-Order Microplane Theory for Quasi-Brittle Materials With Multiple Characteristic Lengths,” J. Eng. Mech.,
140(7), p. 04014046.

Rezakhani,
R.
, and
Cusatis,
G.
, 2016, “
Asymptotic Expansion Homogenization of Discrete Fine-Scale Models With Rotational Degrees of Freedom for the Simulation of Quasi-Brittle Materials,” J. Mech. Phys. Solids,
88, pp. 320–345.

[CrossRef]
Barbosa,
R.
, and
Ghaboussi,
J.
, 1992, “
Discrete Finite Element Methods,” Eng. Comput.,
9(2), pp. 253–266.

[CrossRef]
Ji,
S.
,
Di,
S.
, and
Long,
X.
, 2017, “
DEM Simulation of Uniaxial Compressive and Flexural Strength of Sea Ice: Parametric Study,” J. Eng. Mech.,
143(1), p. C4016010.

Cundall,
P. A.
, and
Strack,
O. D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies,” Géotechnique,
29(1), pp. 47–65.

[CrossRef]
Proctor,
E. A.
,
Ding,
F.
, and
Dokholyan,
N. V.
, 2011, “
Discrete Molecular Dynamics,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
1(1), pp. 80–92.

[CrossRef]
Rapaport,
D. C.
,
Blumberg,
R. L.
,
McKay,
S. R.
, and
Christian,
W.
, 1996, “
The Art of Molecular Dynamics Simulation,” Comput. Phys.,
10(5), pp. 456–456.

[CrossRef]
Courant,
R.
,
Friedrichs,
K.
, and
Lewy,
H.
, 1976, “
On the Partial Difference Equations of Mathematical Physics,” IBM J.,
11, pp. 215–234.

[CrossRef]
Belytschko,
T.
,
Liu,
W. K.
, and
Moran,
B.
, 2000, Nonlinear Finite Elements for Continua and Structures,
Wiley,
Chichester, UK.

Linang,
Y.
,
Lee,
H.
,
Lim,
S.
,
Lin,
W.
,
Lee,
K.
, and
Wu,
C.
, 2002, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory,” J. Sound Vib.,
252(3), pp. 527–544.

[CrossRef]
Antoulas,
A. C.
, 2005, Approximation of Large-Scale Dynamical Systems, Vol.
6,
SIAM, Philadelphia, PA.

[CrossRef]
Kalashnikova,
I.
, and
Barone,
M. F.
, 2012, “
Efficient Non-Linear Proper Orthogonal Decomposition/Galerkin Reduced Order Models With Stable Penalty Enforcement of Boundary Conditions,” Int. J. Numer. Methods Eng.,
90(11), pp. 1337–1362.

[CrossRef]
Cusatis,
G.
,
Mencarelli,
A.
,
Pelessone,
D.
, and
Baylot,
J. T.
, 2011, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation,” Cem. Concr. Compos.,
33(9), pp. 891–905.

[CrossRef]
Lale,
E.
,
Zhou,
X.
, and
Cusatis,
G.
, 2015, “
Isogeometric Implementation of High Order Microplane Model for the Simulation of High Order Elasticity, Softening, and Localization,” ASME J. Appl. Mech.,
84(1), pp. 3523–3545.

Pelessone,
D.
, 2015, “MARS, Modeling and Analysis of the Response of Structures”
User's Manual, Engineering and Software System Solutions, Inc., San Diego, CA.

Smith,
J.
, and
Cusatis,
G.
, 2016, “
Numerical Analysis of Projectile Penetration and Perforation of Plain and Fiber Reinforced Concrete Slabs,” Int. J. Numer. Anal. Methods Geomech., **41**(3), pp. 315–337.

Alnaggar,
M.
,
Cusatis,
G.
, and
Di Luzio,
G.
, 2013, “
Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) Deterioration of Concrete Structures,” Cem. Concr. Compos.,
41, pp. 45–59.

[CrossRef]
Alnaggar,
M.
,
Di Luzio,
G.
, and
Cusatis,
G.
, 2017, “
Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions,” Materials,
10(5), p. 471.

[CrossRef]
Alnaggar,
M.
,
Liu,
M.
,
Qu,
L.
, and
Cusatis,
G.
, 2015, “
Lattice Discrete Particle Modeling of Acoustic Nonlinearity Change in Accelerated Alkali Silica Reaction (Asr) Tests,” Mater. Struct. J.,
49(9), pp. 3523–3545.

[CrossRef]
Ceccato,
C.
,
Salviato,
M.
,
Pellegrino,
C.
, and
Cusatis,
G.
, 2017, “
Simulation of Concrete Failure and Fiber Reinforced Polymer Fracture in Confined Columns With Different Cross Sectional Shape,” Int. J. Solids Struct.,
108, pp. 216–229.

[CrossRef]
Schauffert,
E. A.
, and
Cusatis,
G.
, 2011, “
Lattice Discrete Particle Model for Fiber-Reinforced Concrete. I: Theory,” J. Eng. Mech.,
138(7), pp. 826–833.

[CrossRef]
Schauffert,
E. A.
,
Cusatis,
G.
,
Pelessone,
D.
,
O'Daniel,
J. L.
, and
Baylot,
J. T.
, 2012, “
Lattice Discrete Particle Model for Fiber-Reinforced Concrete. II: Tensile Fracture and Multiaxial Loading Behavior,” J. Eng. Mech.,
138(7), pp. 834–841.

[CrossRef]
Jin,
C.
,
Buratti,
N.
,
Stacchini,
M.
,
Savoia,
M.
, and
Cusatis,
G.
, 2016, “
Lattice Discrete Particle Modeling of Fiber Reinforced Concrete: Experiments and Simulations,” Eur. J. Mech.−A/Solids,
57, pp. 85–107.

[CrossRef]Wan, L., Wendner, R., and Cusatis, G., 2015, “A Hygro-Thermo-Chemo-Mechanical Model for the Simulation of Early Age Behavior of Ultra High Performance Concrete,” 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures (CONCREEP), Sept. 19–20, Vienna, Austria.

https://ascelibrary.org/doi/abs/10.1061/9780784479346.020
Wan-Wendner,
L.
,
Wan-Wendner,
R.
, and
Cusatis,
G.
, 2018, “
Age-Dependent Size Effect and Fracture Characteristics of Ultra-High Performance Concrete,” Cem. Concr. Compos.,
85(Suppl. C), pp. 67–82.

[CrossRef]
Ashari,
S. E.
,
Buscarnera,
G.
, and
Cusatis,
G.
, 2017, “
A Lattice Discrete Particle Model for Pressure-Dependent Inelasticity in Granular Rocks,” Int. J. Rock Mech. Min. Sci.,
91, pp. 49–58.

Li, W., Cusatis, G., and Jin, C., 2016, “Integrated Experimental and Computational Characterization of Shale at Multiple Length Scales,” *New Frontiers in Oil and Gas Exploration*, Springer, Berlin.