0
Research Papers

The Temperature-Dependent Ideal Shear Strength of Solid Single Crystals

[+] Author and Article Information
Tianbao Cheng

Beijing Key Laboratory of Lightweight
Multi-Functional Composite Materials
and Structures,
Beijing Institute of Technology,
Beijing 100081, China
e-mail: tbcheng@cqu.edu.cn

Daining Fang

Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081, China

Yazheng Yang

State Key Laboratory of Explosion
Science and Technology,
Beijing Institute of Technology,
Beijing 100081, China

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 23, 2017; final manuscript received December 20, 2017; published online January 16, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(3), 031005 (Jan 16, 2018) (5 pages) Paper No: JAM-17-1650; doi: 10.1115/1.4038884 History: Received November 23, 2017; Revised December 20, 2017

Knowledge of the ideal shear strength of solid single crystals is of fundamental importance. However, it is very hard to determine this quantity at finite temperatures. In this work, a theoretical model for the temperature-dependent ideal shear strength of solid single crystals is established in the view of energy. To test the drawn model, the ideal shear properties of Al, Cu, and Ni single crystals are calculated and compared with that existing in the literature. The study shows that the ideal shear strength first remains approximately constant and then decreases almost linearly as temperature changes from absolute zero to melting point. As an example of application, the “brittleness parameter” of solids at elevated temperatures is quantitatively characterized for the first time.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bahr, D. F. , Kramer, D. E. , and Gerberich, W. W. , 1998, “ Non-Linear Deformation Mechanisms During Nanoindentation,” Acta Mater., 46(10), pp. 3605–3617. [CrossRef]
Lorenz, D. , Zeckzer, A. , Hilpert, U. , and Grau, P. , 2003, “ Pop-In Effect as Homogeneous Nucleation of Dislocations During Nanoindentation,” Phys. Rev. B, 67, p. 172101. [CrossRef]
Minor, A. M. , Syed Asif, S. A. , Shan, Z. W. , Stach, E. A. , Cyrankowski, E. , Wyrobek, T. J. , and Warren, O. L. , 2006, “ A New View of the Onset of Plasticity During the Nanoindentation of Aluminium,” Nat. Mater., 5, pp. 697–702. [CrossRef] [PubMed]
Bei, H. , Shim, S. , George, E. P. , Miller, M. K. , Herbert, E. G. , and Pharr, G. M. , 2007, “ Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique,” Scr. Mater., 57(5), pp. 397–400. [CrossRef]
Wu, B. , Heidelberg, A. , and Boland, J. J. , 2005, “ Mechanical Properties of Ultrahigh-Strength Gold Nanowires,” Nat. Mater., 4, pp. 525–529. [CrossRef] [PubMed]
Richter, G. , Hillerich, K. , Gianola, D. S. , Mönig, R. , Kraft, O. , and Volkert, C. A. , 2009, “ Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition,” Nano Lett., 9(8), pp. 3048–3052. [CrossRef] [PubMed]
Yue, Y. H. , Liu, P. , Zhang, Z. , Han, X. D. , and Ma, E. , 2011, “ Approaching the Theoretical Elastic Strain Limit in Copper Nanowires,” Nano Lett., 11(8), pp. 3151–3155. [CrossRef] [PubMed]
Li, J. , 2007, “ The Mechanics and Physics of Defect Nucleation,” MRS Bull., 32(2), pp. 151–159. [CrossRef]
Rice, J. R. , 1992, “ Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept,” J. Mech. Phys. Solids, 40(2), pp. 239–271. [CrossRef]
Warner, D. H. , and Curtin, W. A. , 2009, “ Origins and Implications of Temperature-Dependent Activation Energy Barriers for Dislocation Nucleation in Face-Centered Cubic Metals,” Acta Mater., 57(14), pp. 4267–4277. [CrossRef]
Shang, S. L. , Wang, W. Y. , Wang, Y. , Du, Y. , Zhang, J. X. , Patel, A. D. , and Liu, Z. K. , 2012, “ Temperature-Dependent Ideal Strength and Stacking Fault Energy of FCC Ni: A First-Principles Study of Shear Deformation,” J. Phys.: Condens. Matter, 24(15), p. 155402. [CrossRef] [PubMed]
Zhou, W. , Zhang, Y. , Sun, H. , and Chen, C. , 2012, “ Ideal Strength and Structural Instability of Aluminum at Finite Temperatures,” Phys. Rev. B, 86, p. 054118. [CrossRef]
Iskandarov, A. M. , Dmitriev, S. V. , and Umeno, Y. , 2011, “ Temperature Effect on Ideal Shear Strength of Al and Cu,” Phys. Rev. B, 84, p. 224118. [CrossRef]
Ryu, S. , Kang, K. , and Cai, W. , 2011, “ Predicting the Dislocation Nucleation Rate as a Function of Temperature and Stress,” J. Mater. Res., 26(18), pp. 2335–2354. [CrossRef]
Frenkel, J. , 1926, “ Theorie Der Elastizitatsgrenze Und Der Festigkeit Kristallinischer Korper,” Z. Phys., 37(7–8), pp. 572–609. [CrossRef]
Clatterbuck, D. M. , Chrzan, D. C. , and Morris, J. W., Jr. , 2003, “ The Ideal Strength of Iron in Tension and Shear,” Acta Mater., 51(8), pp. 2271–2283. [CrossRef]
Pokluda, J. , Černý, M. , Šandera, P. , and Šob, M. , 2004, “ Calculations of Theoretical Strength: State of the Art and History,” J. Comput. Aided Mater. Des., 11(1), pp. 1–28. [CrossRef]
Kelly, A. , and Macmillan, N. H. , 1986, Strong Solids, Oxford University Press, London.
Anderson, P. M. , Hirth, J. P. , and Lothe, J. , 2017, Theory of Dislocations, Cambridge University Press, New York.
Ogata, S. , Li, J. , Hirosaki, N. , Shibutani, Y. , and Yip, S. , 2004, “ Ideal Shear Strain of Metals and Ceramics,” Phys. Rev. B, 70, p. 104104. [CrossRef]
Mackenzie, J. K. , 1949, “ A Theory of Sintering and The Theoretical Yield Strength of Solids,” Ph.D. dissertation, University of Bristol, Bristol, UK.
Roundy, D. , Krenn, C. R. , Cohen, M. L. , and Morris, J. W., Jr. , 1999, “ Ideal Shear Strengths of Fcc Aluminum and Copper,” Phys. Rev. Lett., 82, pp. 2713–2716. [CrossRef]
Krenn, C. R. , Roundy, D. , Morris , J. W., Jr ., and Cohen, M. L. , 2001, “ The Non-Linear Elastic Behavior and Ideal Shear Strength of Al and Cu,” Mater. Sci. Eng. A, 317(1–2), pp. 44–48. [CrossRef]
Ogata, S. , Li, J. , and Yip, S. , 2002, “ Ideal Pure Shear Strength of Aluminum and Copper,” Science, 298(5594), pp. 807–811. [CrossRef] [PubMed]
Jahnátek, M. , Hafner, J. , and Krajčı´, M. , 2009, “ Shear Deformation, Ideal Strength, and Stacking Fault Formation of Fcc Metals: A Density-Functional Study of Al and Cu,” Phys. Rev. B, 79, p. 224103. [CrossRef]
Černý, M. , and Pokluda, J. , 2008, “ Influence of Superimposed Normal Stress on the <112>{111} Shear Strength in Perfect FCC Metals,” Comp. Mater. Sci., 44(1), pp. 127–130. [CrossRef]
Ogata, S. , Li, J. , Shibutani, Y. , and Yip, S. , 2004, “ Ab Initio Study of Ideal Shear Strength,” IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength, Osaka, Japan, July 6–11, pp. 401–410.
Černý, M. , and Pokluda, J. , 2010, “ The Theoretical Shear Strength of FCC Crystals Under Superimposed Triaxial Stress,” Acta Mater., 58(8), pp. 3117–3123. [CrossRef]
Liu, Y. L. , Zhang, Y. , Zhou, H. B. , Lu, G. H. , and Kohyama, M. , 2008, “ Theoretical Strength and Charge Redistribution of FCC Ni in Tension and Shear,” J. Phys.: Condens. Matter, 20(33), p. 335216. [CrossRef]
Iskandarov, A. M. , Dmitriev, S. V. , and Umeno, Y. , 2012, “ On Accurate Approach for Molecular Dynamics Study of Ideal Strength at Elevated Temperature,” J. Solid Mech. Mater. Eng., 6(1), pp. 29–38. [CrossRef]
Cheng, T. B. , Li, W. G. , and Fang, D. N. , 2014, “ Modeling of the Temperature-Dependent Ideal Tensile Strength of Solids,” Phys. Scr., 89(8), p. 085803. [CrossRef]
Cheng, T. B. , and Li, W. G. , 2015, “ The Temperature-Dependent Ideal Tensile Strength of ZrB2, HfB2, and TiB2,” J. Am. Ceram. Soc., 98(1), pp. 190–196. [CrossRef]
Cheng, T. B. , Fang, D. N. , and Yang, Y. Z. , 2017, “ A Temperature-Dependent Surface Free Energy Model for Solid Single Crystals,” Appl. Surf. Sci., 393, pp. 364–368. [CrossRef]
Cheng, T. B. , Fang, D. N. , and Yang, Y. Z. , 2017, “ The Temperature-Dependent Surface Energy of Ceramic Single Crystals,” J. Am. Ceram. Soc., 100(4), pp. 1598–1605. [CrossRef]
Stedman, R. , Almqvist, L. , and Nilsson, G. , 1967, “ Phonon-Frequency Distributions and Heat Capacities of Aluminum and Lead,” Phys. Rev., 162, pp. 549–557. [CrossRef]
White, G. K. , and Minges, M. L. , 1997, “ Thermophysical Properties of Some Key Solids: An Update,” Int. J. Thermophys., 18(5), pp. 1269–1327. [CrossRef]
Stoner, E. C. , 1936, “ The Specific Heat of Nickel,” Philos. Mag., 22(145), pp. 81–106. [CrossRef]
Knacke, O. , Kubaschewski, O. , and Hesselmann, K. , 1991, Thermochemical Properties of Inorganic Substances, Springer, Berlin.
Ye, D. L. , and Hu, J. H. , 2002, Handbook of Practicality Inorganic Thermodynamics, Metallurgical Industry Press, Beijing, China (in Chinese).
Lu, X. G. , Selleby, M. , and Sundman, B. , 2005, “ Theoretical Modeling of Molar Volume and Thermal Expansion,” Acta Mater., 53(8), pp. 2259–2272. [CrossRef]
Varshni, Y. P. , 1970, “ Temperature Dependence of the Elastic Constants,” Phys. Rev. B, 2(10–15), pp. 3952–3958. [CrossRef]
Gerlich, D. , and Fisher, E. S. , 1969, “ The High Temperature Elastic Moduli of Aluminum,” J. Phys. Chem. Solids, 30(5), pp. 1197–1205. [CrossRef]
Chang, Y. A. , and Himmel, L. , 1966, “ Temperature Dependence of the Elastic Constants of Cu, Ag, and Au Above Room Temperature,” J. Appl. Phys., 37(9), pp. 3567–3572. [CrossRef]
Alers, G. A. , Neighbours, J. R. , and Sato, H. , 1960, “ Temperature Dependent Magnetic Contributions to the High Field Elastic Constants of Nickel and an Fe-Ni Alloy,” J. Phys. Chem. Solids, 13(1–2), pp. 40–55. [CrossRef]
Renaud, P. , and Steinemann, S. G. , 1989, “ High Temperature Elastic Constants of Fcc Fe-Ni Invar Alloys,” Physics B, 161(1–3), pp. 75–78. [CrossRef]
Siegel, D. J. , 2005, “ Generalized Stacking Fault Energies, Ductilities, and Twinnabilities of Ni and Selected Ni Alloys,” Appl. Phys. Lett., 87(12), p. 121901. [CrossRef]
Datta, A. , Srirangarajan, A. , Waghmare, U. V. , Ramamurty, U. , and To, A. C. , 2011, “ Surface Effects on Stacking Fault and Twin Formation in FCC Nanofilms: A First-Principles Study,” Comp. Mater. Sci., 50(2), pp. 3342–3345. [CrossRef]
Liu, L. , 2015, “Generalized Stacking Fault Energy, Twining and Dislocations of Materials at Finite Temperatures Based on the First-Principles Study and Quasiharmonic Approximation,” Ph.D. dissertation, Chongqing University, Chongqing, China (in Chinese).
Vitos, L. , Ruban, A. V. , Skriver, H. L. , and Kollár, J. , 1998, “ The Surface Energy of Metals,” Surf. Sci., 411(1–2), pp. 186–202. [CrossRef]
Wan, J. , Fan, Y. L. , Gong, D. W. , Shen, S. G. , and Fan, X. Q. , 1999, “ Surface Relaxation and Stress of FCC Metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb,” Modell. Simul. Mater. Sci. Eng., 7(2), pp. 189–206. [CrossRef]
Mishin, Y. , Farkas, D. , Mehl, M. J. , and Papaconstantopoulos, D. A. , 1999, “ Interatomic Potentials for Monoatomic Metals From Experimental Data and Ab Initio Calculations,” Phys. Rev. B, 59(5), pp. 3393–3407. [CrossRef]
Punkkinen, M. P. J. , Hu, Q. M. , Kwon, S. K. , Johansson, B. , Kollár, J. , and Vitos, L. , 2011, “ Surface Properties of 3d Transition Metals,” Philos. Mag., 91(27), pp. 3627–3640. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The schematic for shear of crystals for sliding confined within one single layer of atoms. (Note that, here, simple cubic crystal structure is drawn as an example. This process is valid for all cubic crystals [9].)

Grahic Jump Location
Fig. 2

The normalized unstable and intrinsic stacking fault energies and surface free energy of Ni. (The data points for MD simulation results [10] are connected and extrapolated by linearity fitting of least square.)

Grahic Jump Location
Fig. 3

The ideal shear strengths of (a) Al, (b) Cu, and (c) Ni in {111}<112¯> slip system

Grahic Jump Location
Fig. 4

The “brittleness parameter” of Ni

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In