0
Research Papers

Scar-Like Self-Reinforced and Failure-Tolerant Dielectric Elastomer Actuator With AgNWs Electrode

[+] Author and Article Information
Mingqi Zhang

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: zhangmq@zju.edu.cn

Yuhan Xie

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: xieyuhan@zju.edu.cn

Tingge Yao

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: ytgytg13@zju.edu.cn

Xunuo Cao

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: caoxn@zju.edu.cn

Zhen Zhang

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: zhangzhen105@zju.edu.cn

Guorui Li

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: guoruili@zju.edu.cn

Zipeng Ma

Department of Chemical and Biological
Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: mazipeng@zju.edu.cn

Jie Mao

Department of Chemical and Biological
Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: maoj@zju.edu.cn

Tao Yang

Department of Engineering Mechanics,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: tao_yang@zju.edu.cn

Yingwu Luo

The State Key Laboratory of Chemical
Engineering,
College of Chemical and Biological Engineering,
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: yingwu.luo@zju.edu.cn

Tiefeng Li

Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Department of Engineering Mechanics,
Soft Matter Research Center (SMRC),
Zhejiang University,
38 Zheda Road,
Hangzhou 310027, China
e-mail: litiefeng@zju.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 26, 2017; final manuscript received December 15, 2017; published online January 16, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(3), 031006 (Jan 16, 2018) (6 pages) Paper No: JAM-17-1653; doi: 10.1115/1.4038809 History: Received November 26, 2017; Revised December 15, 2017

Scar structures of natural animals can reinforce the wounds both mechanically and biologically to maintain the functions of the injured muscle and skin. Inspired by the scar structure, we present a dielectric elastomer (DE) with silver nanowire electrodes possessing the scar-like ability. This DE membrane can tolerate the failures by both electric breakdown and mechanical rupture. The DE actuator (DEA) can maintain their performances of force and displacement output after multiple failures. Scanning electronic microscope (SEM) images show that the scar-like structures accumulate around the electromechanical failure locations on the DE membrane as the stiffened and insulated regions, which prevent further short current and membrane rupture. J-integrals and stress distribution around the failure location have been calculated by finite element analysis to verify the mechanical reinforcements of the scar-like structures over crack propagation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barcohen, Y. , Kim, K. J. , Ryeol Choi, H. , and Madden, J. D. W. , 2007, “ Editorial: Electroactive Polymer Materials,” Smart Mater. Struct., 16(2), pp. 493–497. [CrossRef]
Pelrine, R. , Kornbluh, R. , Pei, Q. , and Joseph, J. , 2000, “ High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,” Science, 287(5454), pp. 836–839.
Brochu, P. , and Pei, Q. , 2010, “ Advances in Dielectric Elastomers for Actuators and Artificial Muscles,” Macromol. Rapid Commun., 31(1), pp. 10–36. [CrossRef] [PubMed]
Bozlar, M. , Punckt, C. , Korkut, S. , Zhu, J. , Foo, C. C. , Suo, Z. , and Aksay, I. A. , 2012, “ Dielectric Elastomer Actuators With Elastomeric Electrodes,” Appl. Phys. Lett., 101(9), p. 091907. [CrossRef]
Li, T. , Qu, S. , and Yang, W. , 2012, “ Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator,” Int. J. Solids Struct., 49(26), pp. 3754–3761. [CrossRef]
Li, T. , Keplinger, C. , Baumgartner, R. , Bauer, S. , Yang, W. , and Suo, Z. , 2013, “ Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability,” J. Mech. Phys. Solids, 61(2), pp. 611–628. [CrossRef]
Lu, T. , An, L. , Li, J. , Yuan, C. , and Wang, T. J. , 2015, “ Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube,” J. Mech. Phys. Solids, 85, pp. 160–175. [CrossRef]
Huang, J. , Lu, T. , Zhu, J. , Clarke, D. R. , and Suo, Z. , 2012, “ Large, Uni-Directional Actuation in Dielectric Elastomers Achieved by Fiber Stiffening,” Appl. Phys. Lett., 100(21), p. 211901. [CrossRef]
Mao, G. , Li, T. , Zou, Z. , Qu, S. , and Shi, M. , 2014, “ Prestretch Effect on Snap-Through Instability of Short-Length Tubular Elastomeric Balloons Under Inflation,” Int. J. Solids Struct., 51(11–12), pp. 2109–2115. [CrossRef]
Zhao, J. , Niu, J. , Mccoul, D. , Ren, Z. , and Pei, Q. , 2015, “ Phenomena of Nonlinear Oscillation and Special Resonance of a Dielectric Elastomer Minimum Energy Structure Rotary Joint,” Appl. Phys. Lett., 106(13), p. 133504. [CrossRef]
Mannsfeld, S. C. , Tee, B. C. , Stoltenberg, R. M. , Chen, C. V. H. , Barman, S. , Muir, B. V. , Sokolov, A. N. , Reese, C. , and Bao, Z. , 2010, “ Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers,” Nat. Mater., 9(10), pp. 859–864. [CrossRef] [PubMed]
Li, T. , Xie, Y. , Li, C. , Yang, X. , Jin, Y. , Liu, J. , and Huang, X. , 2015, “ Fiber-Reinforced Dielectric Elastomer Laminates With Integrated Function of Actuating and Sensing,” Proc. SPIE, 9430, p. 94301W.
Gisby, T. A. , O'Brien, B. M. , and Anderson, I. A. , 2013, “ Self Sensing Feedback for Dielectric Elastomer Actuators,” Appl. Phys. Lett., 102(19), p. 193703. [CrossRef]
Mckay, T. G. , Rosset, S. , Anderson, I. A. , and Shea, H. , 2014, “ Dielectric Elastomer Generators That Stack Up,” Smart Mater. Struct., 24(1), p. 015014. [CrossRef]
Lee, R. H. , Basuli, U. , Lyu, M. , Kim, E. S. , and Nah, C. , 2014, “ Fabrication and Performance of a Donut-Shaped Generator Based on Dielectric Elastomer,” J. Appl. Polym., 131(7), pp. 2113–2124. [CrossRef]
Shian, S. , Diebold, R. M. , Mcnamara, A. , and Clarke, D. R. , 2012, “ Highly Compliant Transparent Electrodes,” Appl. Phys. Lett., 101(6), pp. 344–625. [CrossRef]
Low, S. H. , and Lau, G. K. , 2014, “ Bi-Axially Crumpled Silver Thin-Film Electrodes for Dielectric Elastomer Actuators,” Smart Mater. Struct., 23(12), p. 125021. [CrossRef]
Yuan, W. , Hu, L. B. , Yu, Z. B. , Lam, T. , Biggs, J. , Ha, S. M. , Xi, D. J. , Chen, B. , Senesky, M. K. , Grüner, G. , and Pei, Q. , 2008, “ Fault-Tolerant Dielectric Elastomer Actuators Using Single-Walled Carbon Nanotube Electrodes,” Adv. Mater., 20(3), pp. 621–625. [CrossRef]
Wu, J. , Zang, J. , Rathmell, A. R. , Zhao, X. , and Wiley, B. J. , 2013, “ Reversible Sliding in Networks of Nanowires,” Nano Lett., 13(6), pp. 2381–2386. [CrossRef] [PubMed]
De, S. , Higgins, T. M. , Lyons, P. E. , Doherty, E. M. , Nirmalraj, P. N. , Blau, W. J. , Boland, J. J. , and Coleman, J. N. , 2009, “ Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano, 3(7), pp. 1767–1774. [CrossRef] [PubMed]
Wynn, T. A. , 2008, “ Cellular and Molecular Mechanisms of Fibrosis,” J. Pathol., 214(2), pp. 199–210. [CrossRef] [PubMed]
Carpi, F. , Anderson, I. , Bauer, S. , Frediani, G. , Gallone, G. , Gei, M. , Graaf, C. , Mistral, C. J. , Kaal, W. , Kofod, G. , Kollosche, M. , Kornbluh, R. , Lassen, B. , Matysek, M. , Michel, S. , Nowak, S. , Brien, B. O. , Pei, Q. B. , Pelrine, R. , Rechenbach, B. , Rosset, S. , and Shea, H. , 2015, “ Standards for Dielectric Elastomer Transducers,” Smart Mater. Struct., 24(10), p. 105025. [CrossRef]
Pancheshnyi, S. V. , Lacoste, D. A. , and Bourdon, A. , 2006, “ Ignition of Propane–Air Mixtures by a Repetitively Pulsed Nanosecond Discharge,” IEEE Trans. Plasma Sci., 34(6), pp. 2478–2487. [CrossRef]
Naït-Abdelaziz, M. , Zaïri, F. , Qu, Z. , Hamdi, A. , and Hocine, N. A. , 2012, “ J Integral as a Fracture Criterion of Rubber-Like Materials Using the Intrinsic Defect Concept,” Mech. Mater., 53, pp. 80–90. [CrossRef]
Li, T. , Li, W. , Zou, Z. , Hong, Z. , and Qu, S. , 2014, “ Effects of Stretching Rate and Size on the Rupture of Acrylic Dielectric Elastomer,” Int. J. Appl. Mech., 6(3), p. 1450026. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

The FEA simulations results. (a) The DE membrane (with circular crack) in the reference state without a scar-like ring. (b) The DE membrane (with circular crack) in the reference state with a scar-like ring. (c) The DE membrane (with circular crack) in the stretched state without a scar-like ring. (d) The DE membrane (with circular crack) in the stretched state with a scar-like ring. The local stresses distributions near the crack front on the DE membrane (with circular crack) in the stretched state (e) without a scar-like ring and (f) with a scar-like ring.

Grahic Jump Location
Fig. 1

The fabrication process of AgNWs-DEA: (a) the fabrication procedure and the scar-like structure of the AgNWs-DEA, (b) the image of AgNWs-circular DE actuators (CDEAs) during fabrication, (c) scanning electronic microscope (SEM) and (d) optical top-view images of AgNWs' microstructure on the AgNWs-CDEA

Grahic Jump Location
Fig. 3

Scanning electronic microscope images: (a) the top view and (b) the tilted view of the crater-like structure of the AgNWs-DE membrane with an electrical breakdown failure, (c) AgNWs close to the crater-like structure cracked into isolated islands, LSM images and roughness measurements of (d) the top surface, and (e) bottom surface on the DE membrane around the electrical breakdown failure

Grahic Jump Location
Fig. 2

The AgNWs-CDEA in (a) the reference state and (b) the actuated state with multiple electric breakdown failures, (c) the electric breakdown failures at various voltages on the DE membrane, (d) the voltage–area strain relations of the AgNWs-CDEA, the AgNWs-CDEA in (e) the reference state and (f) the actuated state with a punctured needle, (g) the scar-like structure near the punctured needle on the DE membrane (view with a tilted angle), (h) the voltage–area strain relation of the punctured AgNWs-CDEA, The AgNWs-UFDEA in (i) the reference state and (j) the actuated state with a punctured hole, (k) the scar-like structure near the punctured hole on the DE membrane, and (l) the voltage–output force relations of the punctured AgNWs-UFDEA

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In