National Research Council, 2011, Opportunities in Protection Materials Science and Technology for Future Army Applications,
The National Academies Press,
Washington, DC.

Forquin,
P.
, 2017, “
Brittle Materials at High-Loading Rates: An Open Area of Research,” Philos. Trans. R. Soc. A,
375(2085), p. 20160436.

[CrossRef]
Paliwal,
B.
, and
Ramesh,
K. T.
, 2008, “
An Interacting Micro-Crack Damage Model for Failure of Brittle Materials Under Compression,” J. Mech. Phys. Solids,
56(3), pp. 896–923.

[CrossRef]
Graham-Brady,
L.
, 2010, “
Statistical Characterization of Meso-Scale Uniaxial Compressive Strength in Brittle Materials With Randomly Occurring Flaws,” Int. J. Solids Struct.,
47(18–19), pp. 2398–2413.

[CrossRef]
Bhat,
H. S.
,
Rosakis,
A. J.
, and
Sammis,
C. G.
, 2012, “
A Micromechanics Based Constitutive Model for Brittle Failure at High Strain Rates,” ASME J. Appl. Mech.,
79(3), p. 031016.

[CrossRef]
Bažant,
Z. P.
, and
Caner,
F. C.
, 2013, “
Comminution of Solids Caused by Kinetic Energy of High Shear Strain Rate, With Implications for Impact, Shock and Shale Fracturing,” Proc. Nat'l. Acad. Sci. U. S. A.,
110(48), pp. 19291–19294.

[CrossRef]
Bažant,
Z. P.
, and
Caner,
F. C.
, 2014, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy,” J. Mech. Phys. Solids,
64, pp. 223–235.

[CrossRef]
Caner,
F. C.
, and
Bažant,
Z. P.
, 2014, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: II—Microplane Model and Verification,” J. Mech. Phys. Solids,
64, pp. 236–248.

Zavattieri,
P. D.
, and
Espinosa,
H. D.
, 2001, “
Grain Level Analysis of Crack Initiation and Propagation in Brittle Materials,” Acta Mater.,
49(20), pp. 4291–4311.

[CrossRef]
Zhou,
F.
, and
Molinari,
J. F.
, 2004, “
Stochastic Fracture of Ceramics Under Dynamic Tensile Loading,” Int. J. Solids Struct.,
41(21–23), pp. 6573–6596.

[CrossRef]
Zhou,
F.
,
Molinari,
J. F.
, and
Ramesh,
K. T.
, 2005, “
A Cohesive Model Based Fragmentation Analysis: Effects of Strain Rate and Initial Flaws Distribution,” Int. J. Solids Struct.,
42(18–19), pp. 5181–5207.

[CrossRef]
Daphalapurkar,
N. P.
,
Ramesh,
K.
,
Graham-Brady,
L.
, and
Molinari,
J.-F.
, 2011, “
Predicting Variability in the Dynamic Failure Strength of Brittle Materials Considering Pre-Existing Flaws,” J. Mech. Phys. Solids,
59(2), pp. 297–319.

[CrossRef]
Smith,
J.
,
Cusatis,
G.
,
Pelessone,
D.
,
Landis,
E.
,
O'Daniel,
J. L.
, and
Baylot,
J.
, 2014, “
Discrete Modeling of Ultra-High-Performance Concrete With Application to Projectile Penetration,” Int. J. Impact Eng.,
65, pp. 13–32.

[CrossRef]
Smith,
J.
, and
Cusatis,
G.
, 2017, “
Numerical Analysis of Projectile Penetration and Perforation of Plain and Fiber Reinforced Concrete Slabs,” Int. J. Numer. Anal. Methods Geomech.,
41(3), pp. 315–337.

[CrossRef]
Molinari,
J. F.
,
Gazonas,
G.
,
Raghupathy,
R.
,
Rusinek,
A.
, and
Zhou,
F.
, 2007, “
The Cohesive Element Approach to Dynamic Fragmentation: The Question of Energy Convergence,” Int. J. Numer. Methods Eng.,
69(3), pp. 484–503.

[CrossRef]
Reinhardt,
H. W.
, and
Weerheijm,
J.
, 1991, “
Tensile Fracture of Concrete at High Loading Rates Taking Account of Inertia and Crack Velocity Effects,” Int. J. Fract.,
51(1), pp. 31–42.

[CrossRef]
Denoual,
C.
, and
Hild,
F.
, 2000, “
A Damage Model for the Dynamic Fragmentation of Brittle Solids,” Comput. Methods Appl. Mech. Eng.,
183(3–4), pp. 247–258.

[CrossRef]
Gatuingt,
F.
,
Snozzi,
L.
, and
Molinari,
J. F.
, 2013, “
Numerical Determination of the Tensile Response and the Dissipated Fracture Energy of Concrete: Role of the Mesostructure and Influence of the Loading Rate,” Int. J. Numer. Anal. Methods Geomech.,
37(18), pp. 3112–3130.

[CrossRef]
Kimberley,
J.
,
Ramesh,
K. T.
, and
Daphalapurkar,
N. P.
, 2013, “
A Scaling Law for the Dynamic Strength of Brittle Solids,” Acta Mater.,
61(9), pp. 3509–3521.

[CrossRef]
Bažant,
Z. P.
, and
Planas,
J.
, 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials,
CRC Press,
Boca Raton, FL.

Bažant,
Z. P.
, 2004, “
Scaling Theory of Quasibrittle Structural Failure,” Proc. Nat'l. Acad. Sci., U. S. A.,
101(37), pp. 13400–13407.

[CrossRef]
Bažant,
Z. P.
, 2005, Scaling of Structural Strength,
Elsevier,
London.

Bažant,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal,” ASCE J. Eng. Mech.,
110(4), pp. 518–535.

[CrossRef]
Bažant,
Z. P.
, and
Pang,
S. D.
, 2007, “
Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture,” J. Mech. Phys. Solids.,
55(1), pp. 91–134.

[CrossRef]
Le,
J.-L.
,
Bažant,
Z. P.
, and
Bazant,
M. Z.
, 2011, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Crack Growth, Lifetime and Scaling,” J. Mech. Phys. Solids.,
59(7), pp. 1291–1321.

[CrossRef]
Bažant,
Z. P.
, and
Le,
J.-L.
, 2017, Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect,
Cambridge University Press,
Cambridge, UK.

[CrossRef]
Hill,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids,
11(5), pp. 357–362.

[CrossRef]
Hashin,
Z.
, 1983, “
Analysis of Composite Materials—A Survey,” ASME J. Appl. Mech.,
50(3), pp. 481–505.

[CrossRef]
Grassl,
P.
, and
Bažant,
Z. P.
, 2009, “
Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation,” ASCE J. Eng. Mech.,
135(2), pp. 85–92.

[CrossRef]
Bažant,
Z. P.
,
Le,
J.-L.
, and
Bazant,
M. Z.
, 2009, “
Scaling of Strength and Lifetime Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics,” Proc. Nat'l. Acad. Sci., U. S. A.,
106(28), pp. 11484–11489.

[CrossRef]
Daniels,
H. E.
, 1945, “
The Statistical Theory of the Strength of Bundles and Threads,” Proc. R. Soc. London A.,
183(995), pp. 405–435.

[CrossRef]
Phoenix,
S. L.
, 1978, “
Stochastic Strength and Fatigue of Fiber Bundles,” Int. J. Fract.,
14(3), pp. 327–344.

Phoenix,
S. L.
, and
Tierney,
L.-J.
, 1983, “
A Statistical Model for the Time Dependent Failure of Unidirectional Composite Materials Under Local Elastic Load-Sharing Among Fibers,” Eng. Fract. Mech.,
18(1), pp. 193–215.

[CrossRef]
Grote,
D.
,
Park,
S.
, and
Zhou,
M.
, 2001, “
Dynamic Behavior of Concrete at High Strain Rates and Pressures: I. Experimental Characterization,” Int. J. Impact Eng.,
25(9), pp. 869–886.

[CrossRef]
Weerheijm,
J.
,
Vegt,
I.
, and
van Breugel,
K.
, 2007, “
Research Developments and Experimental Data on Dynamic Concrete Behaviour,” Conference on Advances in Construction Materials,
Stuttgart,
Germany, July, pp.765–773.

Salviato,
M.
, and
Bažant,
Z. P.
, 2014, “
The Asymptotic Stochastic Strength of Bundles of Elements Exhibiting General Stress-Strain Laws,” Prob. Eng. Mech.,
36, pp. 1–7.

[CrossRef]
Cusatis,
G.
, 2011, “
Strain-Rate Effects on Concrete Behavior,” Int. J. Impact Eng.,
38(4), pp. 162–170.

[CrossRef]
Hwang,
Y. K.
,
Bolander,
J. E.
, and
Lim,
Y. M.
, 2016, “
Simulation of Concrete Tensile Failure Under High Loading Rates Using Three-Dimensional Irregular Lattice Models,” Mech. Mater.,
101, pp. 136–146.

[CrossRef]
Hwang,
Y. K.
, and
Lim,
Y. M.
, 2017, “
Validation of Three-Dimensional Irregular Lattice Model for Concrete Failure Mode Simulations Under Impact Loads,” Eng. Fract. Mech.,
169, pp. 109–127.

[CrossRef]
Cusatis,
G.
,
Bažant,
Z. P.
, and
Cedolin,
L.
, 2003, “
Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory,” ASCE J. Eng. Mech.,
129(12), pp. 1439–1448.

[CrossRef]
Cusatis,
G.
,
Bažant,
Z. P.
, and
Cedolin,
L.
, 2003, “
Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: II. Computation and Validation,” ASCE J. Eng. Mech.,
129(12), pp. 1449–1458.

[CrossRef]
Cusatis,
G.
, and
Cedolin,
L.
, 2007, “
Two-Scale Study of Concrete Fracturing Behavior,” Eng. Fract. Mech.,
74(1), pp. 3–17.

[CrossRef]
Cusatis,
G.
,
Mencarelli,
A.
,
Pelessone,
D.
, and
Baylot,
J.
, 2011, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation,” Cem. Concr. Compos.,
33(9), pp. 891–905.

[CrossRef]
Cusatis,
G.
,
Pelessone,
D.
, and
Mencarelli,
A.
, 2011, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I. Theory,” Cem. Concr. Comp.,
33(9), pp. 881–890.

[CrossRef]
Ashari,
S. E.
,
Buscarnera,
G.
, and
Cusatis,
G.
, 2017, “
A Lattice Discrete Particle Model for Pressure-Dependent Inelasticity in Granular Rocks,” Int. J. Rock Mech. Min. Sci.,
91, pp. 49–58.

Eliáš,
J.
, 2016, “
Adaptive Technique for Discrete Models of Fracture,” Int. J. Solids Struct.,
100–101, pp. 376–387.

[CrossRef]
Kraft,
R. H.
,
Molinari,
J. F.
,
Ramesh,
K. T.
, and
Warner,
D. H.
, 2008, “
Computational Micromechanics of Dynamic Compressive Loading of a Brittle Polycrystalline Material Using a Distribution of Grain Boundary Properties,” J. Mech. Phys. Solids,
56(8), pp. 2618–2641.

[CrossRef]
Ožbolt,
J.
,
Sharma,
A.
, and
Reinhardt,
H.-W.
, 2011, “
Dynamic Fracture of Concrete—Compact Tension Specimen,” Int. J. Solids Struct.,
48(10), pp. 1534–1543.

[CrossRef]
Ožbolt,
J.
,
Bošnjak,
J.
, and
Sola,
E.
, 2013, “
Dynamic Fracture of Concrete Compact Tension Specimen: Experimental and Numerical Study,” Int. J. Solids Struct.,
50(25–26), pp. 4270–4278.

Eliáš,
J.
,
Vořechovský,
M.
,
Skoček,
J.
, and
Bažant,
Z. P.
, 2015, “
Stochastic Discrete Meso-Scale Simulations of Concrete Fracture: Comparison to Experimental Data,” Eng. Fract. Mech.,
135(1), pp. 1–16.

[CrossRef]
Li,
C.
, and
Der Kiureghian,
A.
, 1993, “
Optimal Discretization of Random Fields,” ASCE J. Eng. Mech.,
119(6), pp. 1136–1154.

[CrossRef]
Newmark,
N.
, 1959, A Method of Computation for Structural Dynamics,
University of Illinois,
Urbana, IL.

Bathe,
K.-J.
, 1996, Finite Element Procedures,
Prentice Hall,
Englewood Cliffs, NJ.

Tonon,
F.
, 2005, “
Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of Its Vertex Coordinates,” J. Math. Stat.,
1(1), pp. 8–11.

[CrossRef]
Rothenburg,
L.
, and
Bathurst,
R. J.
, 1989, “
Analytical Study of Induced Anisotropy in Idealized Granular Materials,” Geotechnique,
39(4), pp. 601–614.

[CrossRef]
Iwashita,
K.
, and
Oda,
M.
, 1999, Mechanics of Granular Materials: An Introduction,
CRC press,
Boca Raton, FL.

Li,
Z.
, and
Lambros,
J.
, 1999, “
Determination of the Dynamic Response of Brittle Composites by the Use of the Split Hopkinson Pressure Bar,” Comp. Sci. Tech.,
59(7), pp. 1097–1107.

[CrossRef]
Blumenthal,
W. R.
, 2005, “
High Strain Rate Compression Testing of Ceramics and Ceramic Composites,” Advances in Ceramic Armor Ceramic Engineering and Science Proceedings,
J. J. Swab
, ed., vol. 26, pp. 89–96.

[CrossRef]
Kara,
A.
,
Tasdemirci,
A.
, and
Guden,
M.
, 2013, “
Modeling Quasi-Static and High Strain Rate Deformation and Failure Behavior of a (±45) Symmetric e-Glass/Polyester Composite Under Compressive Loading,” Mater. Des.,
49, pp. 566–574.

[CrossRef]
Le,
J.-L.
,
Xu,
Z.
, and
Eliáš,
J.
, “
Internal Length Scale of Weakest-Link Statistical Model for Quasibrittle Fracture,” ASCE J. Eng. Mech. (in press).

Luo,
W.
, and
Bažant,
Z. P.
, 2017, “
Fishnet Statistics for Probabilistic Strength and Scaling of Nacreous Imbricated Lamellar Materials,” J. Mech. Phys. Solids,
109, pp. 264–287.

[CrossRef]
Gumbel,
E. J.
, 1958, Statistics of Extremes,
Columbia University Press,
New York.

Le,
J.-L.
, and
Eliáš,
J.
, 2016, “
A Probabilistic Crack Band Model for Quasibrittle Fracture,” ASME J. Appl. Mech.,
83(5), p. 051005.

[CrossRef]