This work focuses on elastic wave propagation in three-dimensional (3D) low-density lattices and explores their wave directionality and energy flow characteristics. In particular, we examine the dynamic response of Kelvin foam, a simple-and framed-cubic lattice, as well as the octet lattice, spanning this way a range of average nodal connectivities and both stretching-and bending-dominated behavior. Bloch wave analysis on unit periodic cells is employed and frequency diagrams are constructed. Our results show that in the low relative-density regime analyzed here, only the framed-cubic lattice displays a complete bandgap in its frequency diagram. New representations of iso-frequency contours and group-velocity plots are introduced to further analyze dispersive behavior, wave directionality, and the presence of partial bandgaps in each lattice. Significant wave beaming is observed for the simple-cubic and octet lattices in the low frequency regime, while Kelvin foam exhibits a nearly isotropic behavior in low frequencies for the first propagating mode. Results of Bloch wave analysis are verified by explicit numerical simulations on finite size domains under a harmonic perturbation.